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Abstract 
 
Recognition of fine-grained visual categories (FGVC) in 
the natural world is a long-tailed problem, meaning 
recognizers must accurately recognize a large diversity of 
categories and most of those categories will naturally have 
limited training data, increasing the likelihood of 
overfitting in these many limited training data categories. 
The iNaturalist 2018 Challenge aimed to benchmark the 
state of the art performance on species identification from 
a photo, where the long-tailed aspect of training is 
compounded by the visual similarity of many species. We 
demonstrate a new state of the art on the iNaturalist 2018 
Challenge with Contextual Label Smoothing (CLS). CLS 
extends label smoothing to narrow the list of categories 
smoothed to only those within the same branch of a 
phylogenetic tree. CLS regularization improves 
performance significantly—the best publicly reported Top3 
error reported on the iNaturalist 2018 Challenge was 
approximately 13%, which we improve to 12% with an 
ensemble of CLS networks trained with dynamic 
minibatching and additional inference windows. We 
present evidence that a 1% improvement on the FGVC 
iNaturalist 2018 Challenge test score (public score) 
represents over a 5 sigma improvement (test score stdev = 
0.17 %) over the former state of the art. 
 
 

1. Introduction 
The problem of fine-grained visual categorization 

(FGVC) has been studied across many domains with many 
image datasets, including FGVC-Aircraft [1], Stanford 
Cars [2], motorcycles [3] and shoes [4], among others. 
Many FGVC datasets of the natural world collect plant and 
animal species [5], birds [6], vegetables and fruits [7], 
plants [8], and dog breeds [9] to identify, among others. 
One of the largest and most imbalanced public datasets of 
natural imagery with these long-tailed FGVC challenges is 
the iNaturalist 2017 Challenge dataset, which the 
iNaturalist 2018 Challenge dataset made even larger and 

more imbalanced [10]. The iNaturalist 2018 Challenge 
training and validation data was made available by 
iNaturalist [11] and the competition was hosted on kaggle 
[12], which scored submissions on an unseen test set. 
Organizersof the iNaturalist 2018 Challenge aimed to: 

push the state of the art in automatic image classification 
for real world data that features a large number of fine-
grained categories with high class imbalance. … The 
dataset features many visually similar species, captured 
in a wide variety of situations, from all over the world. 
[12] 

1.1. iNaturalist 2018’s Long Tails 
We call the most represented training categories in the 

iNaturalist 2018 Challenge data the “head” and the least 
represented categories the “tail” of the distribution (as in 
[13]). Recent work [13] has highlighted key properties of 
FGVC of long-tailed distributions: (1) there are many 
categories (2) most of the categories have limited training 
data (the tail categories) (3) error rates improve only when 
more labeled data is made available for the tail categories 
and (4) additional training data for the head categories does 
not appreciably improve overall performance (i.e. the 
network does not transfer learn from the head categories to 
the tail categories). On the iNaturalist 2018 Challenge data, 
approximately 10% of the categories (~800) comprise the 
head of the distribution, where each category has between 
100 and 1000 training examples, and 75% of the categories 
(~6000) comprise the tail categories, where each category 
has between 2 and 30 training examples.  

The prohibitive cost curve associated with generating 
sufficient training data for long-tailed FGVC applications 
to reach a threshold accuracy is sketched in [13]:  

Collecting the eBird dataset took a few thousand 
motivated birders about 1 year. Increasing its size to the 
point that its top 2000 species contained at least 104 
images would take 100 years. 
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1.2. Label-efficient Approaches to Long Tails 
For this reason, we seek more label-efficient approaches 

that incorporate context to address long-tailed FGVC 
challenges. Our aim is to efficiently encode in the labels, 
themselves, information that mitigates the performance 
degradation to tail categories stemming from limited 
training data. In the spirit of [14], in our proposed 
Contextual Label Smoothing (CLS), we allow tail 
categories to learn from training data pooled from similar 
categories as defined on a hierarchy (a phylogenetic tree) 
with label vector encodings (i.e. soft targets), but unlike 
[14], we do not learn these relationships (which incurs a 
computational cost), but encode them directly with the 
phylogenetic tree [15] as the prior. The labels in the CLS 
approach are diagrammed in contradistinction to 1-hot 
encoding, label smoothing and distillation in Figure 1. 

While 1-hot label encodings (where one category is 
assigned a 1 and all others 0s) of categories have become 
common in mainstream object recognition [16]–[18], we 
argue these 1-hot independent category labels are label-
inefficient—they do not effectively share informative 
training examples across similar labels; they are also 
overconfident—they make deep networks more susceptible 
to overfitting, especially on categories with limited training 
data. 

Two simple relaxations of the 1-hot label encoding to 
better calibrate confidences in FGVC have been shown to 
improve (A) the robustness of the learned networks [19] 
and (B) the ability to learn more accurate tail categories post 
hoc from ensembles with limited training data [20]. In both 
label smoothing and distillation, the training labels are not 
1-hot, but full, and retain some nonzero dot product from 
label vector to label vector. Inspired by both label 
smoothing and distillation, we demonstrate that contextual 
label smoothing (CLS), like hierarchical semantic encoding 
(HSE), can improve recognition rates on long-tailed FGVC 
problems. 

1.3. CLS is Hierarchical Label Smoothing 
Uniform label smoothing is an a priori decision to spread 

contributions from a target label over all other labels 
(Figure 1) uniformly, which has the effect of penalizing 
overconfident predictions [19]. Intuitively, label smoothing 
allows all other categories to contribute training data to a 
target category, and spreading over all categories may 
spread the label information too thinly to efficiently transfer 
learn (as observed in [13]). In this work, we extend label 
smoothing to spread contributions from a label only within 
a branch of a phylogenetic tree provided a priori, not 
smooth over all other categories. Briefly, CLS exploits the 
phylogenetic tree to be more judicious about the label 
smoothing prior. Practically, we do not label smooth a 

 
Figure 1: Contextual Label Smoothing (CLS) label form compared to related label smoothing forms: 1-hot encodings are sparse 
labels (top left). For example, for xi only one nonzero value in yi,1-hot is the target category and all others are 0s. 1-hot labels incorporate 
no regularization (either via a prior or learned post hoc from ensembling). Label smoothing (middle left), contextual label smoothing 
(bottom left), and distillation (right) all incorporate into their full label vectors some degree of regularization. In label smoothing, the 
regularizer is very weak but effective—yi,LabSmooth spreads out a small constant residual contribution of α/nc to every category (where nc 
is the number of categories and u is a constant over all categories). In distillation, K classifiers are first trained with the 1-hot labels—the 
temperature-relaxed logits from the output layers of these K classifiers are then combined into a learned regularization term that is scaled 
and added to the 1-hot target category to form yi,D. The distilled version’s regularized yi,D has dense structure reflecting similarities among 
categories learned from the ensemble. Our method, contextual label smoothing (CLS), requires no learning as in distillation, and encodes 
label similarity from a phylogenetic tree into yi,CLS. The number of categories shared at the genus and family level are ng and nf, 
respectively. The notation u(li) takes the value 1 for all categories shared at the l level with the target category for xi. 
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training example of a humpback whale to have a nonzero 
contribution to learning a monarch butterfly category, but 
we do label smooth a training example of a gluphisia moth 
to have a nonzero contribution to learning the monarch 
butterfly category. While branches of phylogenetic trees are 
not always indicative of visual similarity, we empirically 
demonstrate enough are to justify use of this prior. 

1.4. CLS is Distillation with a Prior 
Where distillation is an empirical post hoc approach to 

encode similarity into label vectors [20], our CLS work can 
be viewed as a form of a priori distillation (Figure 2). 
Specifically, in distillation, an ensemble of classifiers are 
trained (from 1-hot labels). After learning, the 
(temperature-relaxed) logits of this ensemble empirically 
develop higher values for both the true category and 
visually similar categories. These post-hoc logits from this 
ensemble are added to the true 1-hot (hard targets) label for 
every training example in a downstream distillation of the 
ensemble. Intuitively, if only a handful of other classes are 
visually similar to the true class, when downstream training 
occurs with these distilled label vectors (soft targets), every 
one of those visually similar categories will contribute non 
negligibly to the training set for the original 1-hot target 
label. In this way, distillation reuses training examples from 
other categories to train to recognize the target categories 
most visually similar to it—this makes distillation a more 
label-efficient strategy than 1-hot encoding (Figure 2). CLS 
is an a priori version of distillation, encoding similarity as 
shared parentage on a phylogenetic tree provided without 
any downstream ensemble training (as are learned in either 
distillation or HSE). 

1.5. Fine-Tuning with more Balanced Categories 
On similar FGVC tasks [21], better performance was 

obtained by further fine-tuning on a more balanced subset 
of FGVC validation data with a small learning rate.   
Improvements on head categories with ≥100 training 
images were relatively small compared to tail categories 
with <100 training images. This provides an empirical 
rationale for fine-tuning on validation data more uniformly 
distributed over categories to improve performance on 
underrepresented tail categories. We incorporate this type 
of fine-tuning into CLS. 
 
 
 
 

1.6. Contributions 
We make a number of original contributions in this work:  
• Contribution 1: New State of the Art on the 

iNaturalist 2018 Challenge. We demonstrate a new 
state of the art result on the long-tailed FGVC 
iNaturalist 2018 Challenge Data [11]. We estimate 
through a prediction set that this new state of the art 
outperforms the prior state of the art by greater than 
5 σ on the unseen test data. 

• Contribution 2: CLS works best with uniform 
sampling over categories. In contradistinction to 
natural sampling advocated in [13], CLS benefits 
from uniform sampling of categories in training. 

• Contribution 3: CLS improves ensemble 
performance more per marginal network than 
other methods. Given a choice between adding a 
network trained with some other technique to 
increase model diversity in an ensemble, adding 
another CLS-trained network is a better choice. This 

 
Figure 2: Residual connection blocks regularize data and labels: 
Five deep learning-based conceptual “blocks” to remedy well known 
overfitting and vanishing/noisy gradient issues of 1-hot label 
encodings (top left) are diagrammed. The well-known ResNet 
architecture ([22] bottom left) adds copies of the data to regularize 
gradients—this architectural change is common to many of the other 
methods (both the trunk and branch networks of HSE [14] implement 
ResNet models, e.g.). Label smoothing ([19], top middle) can be 
viewed as a residual connection between a 1-hot yi, and an unlearned 
uniform prior. This same strategy inspires this work on CLS (top 
right), but we use an unlearned hierarchical prior. Distillation 
(bottom middle) can be viewed as a residual connection between a 1-
hot yi and a learned soft target (the posterior distribution from 
learning an ensemble was used in [20]). The most general form of 
these combinations we have found is the very recent work on HSE 
(bottom right), which incorporates residual connections learned 
within trunk and branch networks, learns to update soft target priors 
based on an unlearned hierarchical prior, and combines these with 
residual connections at each level of the hierarchy. 
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clarity can reduce the significant hyperparameter 
search and tuning costs over an ensemble. 

• Contribution 4: Larger Input Images Improve 
Performance. We confirm empirically that larger 
input size images, which have recently been shown 
to improve performance on the same task without 
CLS [21], also improves performance of CLS. 

2. Related Work  
2.1. Deep Learning from 1-hot Labels 

Since 2012 [17], deep networks have dominated the state 
of the art in object recognition on images, maturing year 
over year to include new network architectures [18], [22] 
until the performance of deep networks was on par with or 
better than human performance on a standard benchmark 
[23]. While significant attention has been paid to data 
augmentation [17], transfer learning [24], and new 
architectures [18], [22], less work has been devoted to 
improving the 1-hot labels [19], [20], themselves, for 
training data. This work addresses improvements to the 
design of labels, themselves. 

2.2. Label Vector Benefits 

Work on improved label vector engineering includes 
label smoothing [19] and distillation [20], among others 
(Figure 1 & Figure 2). Label smoothing is a simple method 
that incorporates a prior to drive deep networks to solutions 
with higher posterior entropy. Distillation, while originally 
proposed as a method to make networks smaller (in 
memory and computational cost of inference), has also 
demonstrated regularization and adversarial example 
defense properties. 

Work on Hierarchical Semantic Embedding is most 
similar in spirit to this work, but achieves its goals of 
incorporating category similarity through a trunk and 
branches architecture over a collection of 1-hot label 
vectors at various semantic levels (from coarse to fine) [14]. 
Similar to distillation, it adds a predicted category score 
vector (i.e. a soft target) from a coarser level to the 1-hot 
label vector at the next finer level. FGVC results on three 
natural datasets, CUB [6], butterflies [14], and VegFru [7], 
demonstrate the value of HSE. HSE outperforms 17 other 
state of the art methods on CUB. The strategies employed 
in HSE appear to be more general than the simpler 
unlearned CLS prior proposed here (Figure 2), but HSE 
benefits have not yet been demonstrated on as large a 
dataset as that of the iNaturalist 2018 Challenge, which has 
>25x more fine-grained categories and >100x larger 
category imbalance, which are critically relevant aspects of 
long-tailed FGVC challenges [13].  

Importantly, none of the datasets used to demonstrate 
HSE has more than 292 fine grained categories (compared 
to 8,142 for the iNaturalist Challenge 2018 data), with 

CUB’s 200 categories separated into 122 genera, 37 
families, and 13 orders, where 75% of CUB categories fall 
into the head category with 60 training images/category, 
and where all categories have at least 41 training images, 
for a max class imbalance of 1.5 (compared to 500 for the 
iNaturalist 2018 Challenge). The authors’ new butterfly 
dataset also only contains 200 categories. This smaller scale 
of the FGVC challenges addressed by nascent exploration 
of HSE is encouraging, but qualitatively smaller scope than 
evaluation on iNaturalist Challenge 2018 data, which is an 
open dataset and more comprehensive than those datasets 
HSE authors chose to evaluate on. 

Interestingly, HSE training develops learned attention 
mechanisms, making a convincing case that without 
specifically labeled parts, HSE can learn features that 
exploit part-based attention to discriminate in FGVC, as 
was demonstrated to be critical for natural FGVC in other 
work [25].  The critical difference between the label vectors 
in HSE and our CLS work is that all of our label hierarchy 
information is encoded in label vectors without branches 
CLS is a de facto flat prior that is not learned and is 
modularly separable from the architecture—i.e. there is 
only one label vector for each example in CLS, whereas 
HSE requires different label vectors at different levels in the 
architecture, increasing hyperparameter search costs. 

2.3. Long-tailed FGVC Implications 
The properties and implications of long-tailed 

distributions in FGVC have been summarized with 
convincing evidence [13] that (1) statistics of natural image 
categories are long-tailed, (2) more training data for head 
categories does not improve performance on tail categories, 
and (3) natural sampling of categories in training 
minibatches outperforms uniform sampling over 
categories. In [13], authors used standard 1-hot label 
encodings and sampled “naturally” (as opposed to 
uniformly) during training. The argument for natural over 
uniform sampling was empirical—results demonstrated 
both head and tail category performances both improved 
more with natural sampling. In contrast, we argue that the 
thoughtful vector encoding of labels with CLS overturns 
that guidance on sampling method (Contribution 2). 
Choosing training minibatches from CLS with uniform 
sampling over categories outperforms natural sampling. 
Authors conclude:  “As a community we need to face up to 
the long-tailed challenge and start developing algorithms 
for image collections that mirror real-world statistics” 
which outlines the core motivation for this work [13]. 

2.4. Prior State of the Art iNaturalist 
Performance 

The iNaturalist 2017 Challenge was won by Google 
(GMV, for Google Mountain View, on the leaderboard) 
with a Top5 error rate of less than 5% with an ensemble of 
InceptionV3 and InceptionV4 models trained at both 
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299x299 and 560x560 input image sizes, and subsequently 
fine-tuned on a balanced subset of the data left out of the 
test set [21]. The fine-tuning on balanced data boosts 
performance on tail categories of the dataset [1] and during 
inference 12 crops outperformed inference on a single 
prediction for the entire image. 

Compared to the iNaturalist 2017 Challenge, the 
iNaturalist 2018 Challenge reduced the number of training 
images provided from 675,170 to 461,939, increased the 
number of classes from 5,089 to 8,142, and perhaps most 
significantly, provided a complete taxonomy for each class. 
A team from Dalian University won the 2018 challenge 
with a Top3 error rate of 13% [12]. Their winning ensemble 
consisted of 12 ResNet-152 models trained at both 320x320 
and 392x392 input image sizes, six of which used matrix 
power normalized covariance pooling of the last layer of 
convolutional features [2]. 

3. Training Methodology 

3.1. Training and Validation Data Set Splits 
The iNaturalist 2018 Challenge data includes three 

mutually exclusive data sets: training, validation, and test 
data, each containing photos drawn from one of 8,142 
species categories distributed over 4412 genera. The 
training data distribution is imbalanced, with the most 
represented species, Branta canadensis the “Canada 
goose”, having 1000 training examples, whereas the least 
represented species in the training data is the Spatula 
clypeata, the “Northern shoveler duck,” with only two 
training examples. The validation set is uniformly 
distributed over species, with three validation images per 
species. The test set labels are not provided to entrants, but 
entrants can submit Top3 label lists for each of the 149k test 
images to be scored on a Top3 error rate that is blind to 
which examples were marked correctly or incorrectly. In 
the development that follows, 2/3 of the validation data 
(two photos per species) is used for validation fine-tuning 
and 1/3 of the validation data (one photo per species) is used 
as the test score prediction set. In “vanilla” label smoothing 
[19], we assign the target label 0.8 and distribute the 
remaining 0.2 of that example to all other 8,141 categories 
in the label vector. 

3.2. Initialization with Pretrained Networks 
Closely following the winning GMV entrant from the 

iNaturalist 2017 Challenge, we start from an IRV2 and IV4 
pretrained on ImageNet [18], [22]. These two network 
architectures are the starting points for training across all 
input sizes (299x299 and 598x598) and label smoothing 
methods (1-hot, vanilla label smoothing, and CLS). As in 
GMV, for each network in an ensemble, we strip the final 
layer of ImageNet-1K classes from the pretrained network 
and replace it with the iNaturalist 2017 output layer of 
5,089 categories and sample minibatches of 32 images per 

minibatch without replacement from all training examples 
(we trained on 4 GPUs in parallel for an effective minibatch 
size of 128 for the IRV2 model and 6 GPUs in parallel for 
an effective minibatch size of 192 for the IV4 model). We 
fine-tuned on the iNaturalist 2017 training data for {80, 84} 
epochs for {IRV2, IV4}. We then fine-tuned on 90% of the 
iNaturalist 2017 validation data for {30, 14} epochs for 
{IRV2, IV4} using {8, 4} GPUs for effective minibatch 
sizes of {256, 128}. We used SGD with an initial learning 
rate of 0.018 and momentum=0.9 in the first round of 
training for the IRV2 model, reducing the learning rate by 
10% every {8,6} epochs for {IRV2, IV4}. We used 
RMSProp for all other training. The second round of 
training began with learning rates of 0.002 for the IRV2 
model and 0.001 for the IV4 model, and the training rate 
was multiplied by 0.9 every 10 epochs. Note that all 
minibatches in this pretraining were sampled naturally (as 
opposed to uniformly with replacement). 

3.3. Base Fine-Tuning on iNaturalist 2018 
Challenge Data 

We strip the final layer of iNaturalist Challenge 2017 
categories from each pretrained network and replace it with 
the iNaturalist 2018 Challenge output layer with 8,142 
categories. When training, we sample minibatches 
uniformly over categories with replacement (i.e. we sample 
uniformly); this produces minibatches with approximately 
equal contributions from all 8,142 categories. We train for 
1M-1.4M iterations using RMSprop with a base learning 
rate of 0.0045 in base fine-tuning. We use a batch size of 
32. We retain only the model with the highest performance 
on the validation set, as assessed every 50k iterations. 

3.4. Validation Fine-Tuning on iNaturalist 2018 
Challenge Data 

We fine-tune on the validation fine-tuning set only. The 
validation fine-tuning regime is identical to the base fine-
tuning regime with the exception that training begins with 
a base learning rate of 0.0002, and continues for only 25k 
iterations. 

3.5. Ensembling 
We compute unweighted model average ensemble 

results from multiple label smoothing methods to conduct a 
post hoc ablation study via ensemble composition. We rank 
the performance boosts from different components of the 
ensembles to assess the benefits of individual components 
of each ensemble. Ensemble components vary in input 
image size, network type, and label smoothing type. 

3.6. Test Performance Error Analysis 
Additional inference windows: When scoring, we 

include the standard middle, whole image, and four corner 
inference windows (with LR reflections). As an 
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approximation to attention, we also include additional 
inference windows favoring the sides and top of the image 
calculated based on the aspect ratio of each image, under 
the assumption that this is where photographers are more 

likely to include the subject of the photo. 
Test score prediction error rates: Nominally small 

(<0.5%) differences in Top3 error rates on leaderboards can 
be difficult to assess the relative merits of. By estimating a 
test score from the test score prediction data on many model 
outputs, we estimate a practical error bar on our test 
performances. 

4. Results 
The results collected here represent approximately 

20,000 total GPU hours across a mix of NVIDIA GTX® 
1080s, V100s and Titan® Xs. 

For practical perspective, training a single one of our 
models through to final scoring on 2 GPUs requires 
approximately 10 days of compute on 299x299 input image 
sizes and 20 days on 598x598 input image sizes. Note that 
due to the size of our images and batches, only V100s can 
be used to train some of our models at our largest image 
sizes. 

4.1. Label Smoothing Method Comparison 
We show final iNaturalist 2018 Challenge test score 

results from kaggle on 299x299 pixel resolution images for 
the three label smoothing methods: 1-hot (i.e. no label 
smoothing), vanilla label smoothing (with 0.2 redistributed 
across all non-target classes), and CLS (with 0.2 
redistributed across non-target classes in the same branch 
of the phylogenetic tree). Results of 3 runs each of 
{IRV2,IV4} and their ensembles demonstrate CLS 
outperforms both label smoothing and no label smoothing 
(i.e. 1-hot) encodings (Figure 4). 

4.2. Image Size Ensemble Ablation 
We trained ensembles of CLS on both smaller (299x299) 

and larger (598x598) image input sizes into both IRV2 and 
IV4. The CLS performance on larger images consistently 
outperforms CLS trained on smaller images, whether on 
specific network types or ensembles of the same or different 
network types (Figure 5). 

 
 

 

 
Figure 3: Additional inference windows on a photo. The 
“standard” twelve inference windows (six with the original image, 
the same six with the image flipped horizontally) are shown on the 
left of each orientation. For portrait oriented photos, a second set 
of inferences is made on twelve more windows biased toward the 
top of the photo; for landscape oriented photos, the second set of 
inferences is made on twelve more windows biased toward the left 
of the photo. 

 
Figure 4: CLS vs. label smoothing vs. 1-hot encodings. CLS 
networks and ensembles of CLS networks outperform label 
smoothing and no label smoothing for both IRV2 and IV4 
architectures assessed. The iNaturalist 2018 Challenge test scores 
returned from kaggle for the unseen test set is plotted vs. the 
number of models ensembled for each label smoothing method. A 
second-degree spline fit is plotted through the mean score of each 
set of IRV2 and IV4 ensembles for visual clarity. 

 
Figure 5: CLS input size comparison. We find that CLS on 
larger input image sizes (598x598) consistently outperforms CLS 
on smaller input image sizes (299x299). A second-degree spline 
fit is plotted through the mean score of each set of IRV2 and IV4 
ensembles for visual clarity. 
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4.3. CLS Ensemble Ablation 
Throughout testing, we find that additional CLS 

networks trained on larger input image sizes (598x598) 
improve ensembled results the most per additional network 
in the ensemble (Figure 6). We find that unweighted 
network type diversity (including networks trained with and 
without label-smoothing, i.e. 1-hot, IRV2 and IV4 
architectures, and smaller input image sizes) do not 
improve ensemble performance per additional network as 
much as adding a CLS-trained network at a 598x598 input 
image size, indicating that CLS with large imagery 
dominates the potential expected benefit of model diversity 
in these ensembles. When ensembles contain four or more 
networks, we observe that adding networks trained with 
either 1-hot or vanilla label smoothing label vectors can 
hurt performance. 

4.4. Test Performance Error Analysis 
We estimate from the iNaturalist 2018 Challenge test 

score prediction set that our new CLS state of the art result 
on iNaturalist 2018 Challenge test score has a +/- 0.17% σ 
error (Figure 7). Our 1.0% improvement over the former 
state of the art represents a greater than 5 σ improvement 
over the best prior reported public test score of 0.8693 
(compared to our 0.8805) with this estimate of score 
variability. 

 

5. Discussion 
CLS shares training data among categories: By 

encoding non-zero values in the label vectors for categories 
that are not the true target category, CLS learns from a more 
diverse set of examples than only those formally labeled as 
the putative target type. In long-tailed FGVC tasks, we 
expect a number of benefits from this approach.  

In theory, for each target tail category, the relatively few 
training examples of that category with their much larger 
label vector component (0.8) will anchor the learned latent 
space of activations for that category with data from that 
target category. Without full vector labels of any type (i.e. 
1-hot labels), the deep network could overfit to these 
relatively few training examples of the target category (i.e. 
memorize them), suffering poor generalization with no 
other information available to prevent this overfitting. 
Relatively fewer categories (but each with more training 
examples) from the head of the distribution that share the 
same branch of the phylogenetic tree as the target category 
will also contribute to training the target category. These 
examples will bias the learned latent space of activations 
for the target tail category to move closer to those related 
head categories, encouraging transfer learning from the 
head to the tail. Relatively more non-target tail categories, 
each with fewer examples, will more diffusely contribute to 
training the target tail category, ensuring that the network 
does not overfit to either the relatively fewer training 
examples of the target tail category or the more represented 
contributing head categories. 

 
Figure 6: Ensemble Ablation: Only including 598x598 
CLS networks in an ensemble with many networks provides 
state of the art performance with significantly reduced 
training and hyperparameter search and tuning costs 
compared to training a larger ensemble with a diversity of 
networks. Combining CLS networks trained with smaller 
input image sizes or networks not trained with CLS does 
not improve performance per network as much as adding 
another 598x598 CLS network (top curve). 

 
Figure 7: Test Score Error Analysis: By predicting the test error 
rate on the unseen test data based on a test score prediction subset 
(1/3) of the validation data we can observe, we develop confidence 
+/- 1-σ and 2-σ band estimates on the test scores returned by the 
kaggle server on the unseen test data. The iNaturalist 2018 
Challenge final test score winner as reported on the iNaturalist 
2018 Challenge leaderboard [12] at 13% Top3 error is shown as a 
dashed line. 
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In practice, any of these three effects may dominate, and 
rigorously calibrating them is left for future work devoted 
to that detailed analysis to compare to HSE. 

Focused Ensemble Performance with One Label 
Smoothing Method: Since each CLS network at the 
598x598 input size added to an ensemble improves 
performance more than adding another marginal network, 
this CLS benefit also reduces training time by focusing only 
on the CLS-trained models. For instance, in our ensemble 
ablation, we see that five CLS networks trained at the 
598x598 input image size outperforms five CLS networks 
with the addition of any other network type that is not CLS 
598x598. This clarity allows us to focus computational 
resources on only one type of network and not risk losing 
potentially beneficial diversity in our ensembles that might 
accrue from other models with complementary strengths 
had we trained them. This is a critical benefit to 
downstream work comparing different methods because it 
guides efficient allocation of limited compute resources on 
an already computationally intensive task. 

Test Score Prediction Analysis: The scores from the 
test score prediction set (part of the validation set, which 
entrants see) are highly correlated with the test scores for 
the same model (network, or ensemble of networks, e.g) on 
the unseen test data provided per blinded submission by 
kaggle (Figure 7). In independent testing, we submitted a 
number of single category labels to kaggle to interrogate the 
iNaturalist 2018 Challenge test data and found in each case 
that the resulting test scores were very close to each other. 
This indicated that the mutually exclusive test set, while 
unseen and held out from training and validation data, was 
likely uniformly distributed over categories, as was the 
provided validation set. Based on this insight, we used only 
a portion of the validation set for validation fine-tuning 
(following [21]), leaving out a portion also uniformly 
distributed over categories to predict the test score. We 
found that the estimation error between scores on this test 
score prediction set and the actual test score were highly 
correlated.  

We note the interrogation of the test set in this way does 
not confer significant benefit on the test score, as relatively 
tight bounds can be estimated [25], and that large numbers 
of submissions will typically not improve test scores. To 
wit, we did not tune, nor overfit to the test set here, except 
to establish that it was uniformly distributed over 
categories. 

By predicting the test set score from a presumably 
identically distributed (over categories) test score 
prediction set, we estimate a conservative error bar on the 
test score—meaning that the actual error bar is likely 
smaller than our estimate. Specifically, the error bar fit 
estimate degrades with both the test score variability on the 
y-axis (the iNaturalist 2018 Challenge test score σ we seek 
to estimate) as well as the prediction test set score 
variability on the x-axis (which is a nuisance parameter). 

We cannot separate out these two sources of variability, but 
since the test set has many more examples in it, we 
anticipate its contribution to the estimation error, σtest, is 
smaller than the contribution to the estimation error of the 
test score prediction set, σpredict. 

This error analysis helps in two ways. First, it provides a 
rough measure of the real performance improvement from 
method to method based on an empirically estimated 
confidence interval. Roughly, for CLS that translates to 
slightly larger than an approximately 5 σ improvement over 
the former state of the art reported on the iNaturalist 2018 
Challenge [12]. Second, and more important to guide future 
work, such an estimation error together with the measured 
performance improvement per marginal ensemble network 
provides a rough means to estimate the expected 
performance improvement per additional trained network 
in an ensemble. This provides an ensembling stopping 
criterion to focus compute resources, which, along with the 
insight of Contribution 3, that CLS improves ensemble 
performance more per marginal network than other 
methods, is critical to efficiently allocating compute 
resources for methodological comparisons at scale (such as 
between CLS and HSE, e.g.) in downstream work. 

Improving Tail Category Performance with Fine-
Tuning: Prior work [21] inspired our adoption of fine-
tuning on a more uniformly distributed set of categories. In 
our case, we used a fraction of the validation data for this 
purpose. We see similar gains in this work—i.e. CLS also 
benefits from this fine-tuning approach. 

6. Conclusion 
The long tails of FGVC tasks for natural image corpora 

present daunting training data collection requirements to 
achieve required accuracy objectives on tail categories with 
mainstream deep learning methods. Namely, the tail 
categories are many, sparse, and similar, making their per-
category accuracies difficult to improve on with 1-hot 
labels that treat them independently in training. In this work 
we demonstrate that CLS’ hierarchical prior on vector 
labels in the form of a phylogenetic tree can pool training 
data contributions from many of the tail classes, exploit 
their similarities, and thereby improve the accuracy on tail 
classes compared to 1-hot labels or other less judicious 
vector label smoothings. 

CLS is Encoded by Domain Experts: The benefit of 
CLS alone is significant and does not require expertise in 
deep learning to realize—the phylogenetic tree prior came 
directly from a phylogenetic tree curated by biologists [15]. 
This is the only change from other methods [21] 
benchmarked on this same dataset that we show 
underperform without CLS compared to the same methods 
incorporating CLS.  

CLS is Compatible with more Data-Driven Methods: 
While we present results only on CLS without a CLS-
specific hyperparameter search, the CLS method proposed 
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is compatible with more empirical distillation and HSE 
methods which adjust label vectors based on training. 
Specifically, CLS can be incorporated directly into the 
trunk network of HSE, for instance. The CLS ensembles 
can be distilled into a single network to realize the benefits 
of distillation, including distillation benefits of adversarial 
example defense and compute reduction, e.g..  

CLS’s Prior Models can be Extended by Human or 
Machine: While we demonstrate a simple CLS approach 
that exploits an a priori provided phylogenetic tree, this 
unlearned prior can very likely be improved because the 
phylogenetic tree is not, by design, a guide to visual 
similarity, even within a species. For instance, even within 
species, there can be further training example pooling with 
visual similarity as encoded through latent activation 
clustering. Among butterflies, for instance, the within-
species separation of chrysalis, caterpillar and butterfly 
stages may create separable clusters in an embedding of 
latent activations (as with t-SNE, e.g.). Within a bird 
species, the visual ornamentation of males vs. females may 
similarly cluster in an embedding of latent activations. 
Similarly, dog breeds may cluster. All of these finer levels 
may be similarly encoded into the CLS prior by either 
machine or human curator. As with all FGVC tasks, this 
presents additional challenges as training data fragments 
among the categories because categories with very little 
training data are split further, dividing the sparse training 
data among the finer subcategories. We show that CLS can 
still effectively pool training data in that scenario at the 
genus to species level of granularity and leave for future 
work the demonstration of even more fine-grained 
applications of CLS.  

Future Work: Demonstrating and evaluating the 
combined benefits of both the a priori hierarchical CLS 
prior and the post hoc learned latent encodings of 
similarities (as in HSE and distillation, e.g.) together is left 
for future work, as is the significant challenge of comparing 
other methods that make use of the phylogenetic tree prior 
(like HSE) to CLS on the scale of the iNaturalist 2018 
dataset. For perspective, even with no CLS hyperparameter 
tuning, the present study required >20,000 of GPU compute 
time. The GPU compute costs of rigorously comparing 
HSE to CLS with the hyperparameter searches required to 
reach conclusive results are anticipated to be even larger, 
and may warrant additional AutoML investigations, further 
increasing the computational costs. 
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