Overview

General Dynamics’ Sentinel® M-Code GPS Receiver provides Precise Positioning Service position, velocity, and time information for Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) applications. Performance and satellite visibility are enhanced through the use of dual antennas; each of the 64 GPS channels can be assigned to either antenna.

Key Features and Benefits

- LEO, GEO capable with MEO option
- GEO Sidelobe Acquisition and Tracking Algorithms enable continuous PNT availability
- Fast Acquisition Processor enables rapid COLD start capability
- Integrated Anti-Jam Technology
- 64 Channels, L1 and L2 Capable
- C/A, P(Y) and Modernized M-Code, with optional L2C civil signal
- Provides Near Real-time Position, Velocity and Time Measurements for Superior User Performance
- Relative Navigation Capability Allows for Differential Position, Velocity and Time Determination Between Co-orbiting Spacecraft (Optional)
- Precision Time Stamping Allows Unprecedented Accuracies in Space
- Precise Position Service Key Management Supports All Selective Availability Anti-spoof Module (SAASM) Unique Keying
- Single or Dual Antenna Capability Allows the Spacecraft User Installation Flexibility and Performance
- Qualified and Tested for the Space Environment: Pyrotechnic Shock, Random Vibration, Thermal-vacuum and EMI/EMC (Tailored Mil-Std-461F)

Sentinel® M-Code GPS Receiver

Precise positioning service in space

Design Based on Legacy Monarch™ GPS Receiver Space-Qualified Digital Design

80+ Equivalent Years of Accumulated Trouble-Free DoD Space Heritage; > 500K Orbits

Same Reliable Position, Velocity, Time, Pseudorange, and Carrier Phase @ 10 Sec Optional

Optional Relative Navigation Position, Velocity, and Time Modes

RS-422 I/O interface and control, protocol similar to Legacy Viceroy™ C/A Receiver

Optional MIL-STD-1553B Interface & Control
Sentinel® M-Code Receiver

Performance Characteristics

Receiver Architecture
- 64 Channels PPS-GPS C/A, P(Y), M-Code Channels, L2C available as an option
- Dual Antenna – any channel to either antenna
- Frequencies & Codes: L1 & L2, C/A Code, P(Y), M-Code, L2C optional
- Narrow Bandwidth Acceleration-Aided Carrier/Code Tracking
- Tracking, and Navigation Algorithms based on Monarch-M℠ GPS Receiver
- On-Orbit Software Reprogrammable

Orbital Dynamics
- Altitude: LEO, GEO (200 km – 45,000 km), MEO Optional
- Velocity: up to 16,000 meters/second
- Acceleration: 1G

Optional and Custom Features
- External Reference Oscillator or Internal Precision
- GEO Sidelobe Acquisition and Tracking Software
- High Dynamics Acquisition & Tracking

Input / Output
- RS-422, Follows Legacy Viceroy™ Receiver ICD
 - Optional: MIL-STD-1553B, Follows Legacy Monarch™ / Monarch-M℠ ICD
- One Pulse per Second (GPS, UTC, or Measurement Epoch Time)
- Time Stamp Input Signal, measures the time of an external pulse

Physical/Environmental
- Radiation: 100 Krads
- Single Event Upset: < 1 per year
- Single Event Latchup: Immune
- Reliability: 0.90, 10 year, 30°C Baseplate, 100% duty cycle
- Vibration: 16.6 Grms
- Pyro Shock: 3000 G
- Temperature: -34°C to +71°C
- Size: 180 x 160 x 60 mm-Envelope
- Weight: < 2.5 kg
- DC Power:
 - < 9w typical LEO (dual antenna)
 - < 8w typical GEO (single antenna)

LEO Solution Accuracy
- Autonomous Position: 4.0 meters, 1 sigma, < 1 meter typical
- Autonomous Velocity: < 2 cm/sec, 1 sigma, < 0.5 cm/sec typical
- Clock and 1PPS Absolute: < 20 ns 1 sigma, < 5 ns typical
- Time Strobe Input: < 20 ns, 1 sigma
- Optional Relative PVT Mode: 0.5m, 0.5 cm/sec, 4 ns (1 sigma)

GEO Solution Accuracy
- Autonomous Position: 25 meters, 1 sigma, < 5 meter typical
- Autonomous Velocity: < 2 cm/sec, 1 sigma, < 0.5 cm/sec typical
- Clock and 1PPS Absolute: < 20 ns 1 sigma, < 5 ns typical
- Time Strobe Input: < 20 ns, 1 sigma

Cold Start Time to First Fix (self-test complete & assumed keyed)
- LEO < 10 minutes, 67% probability
- GEO < 15 minutes, 90% probability

Joseph Verderame • Manager, Business Development • 480.586.9973 • joseph.verderame@gd-ms.com • www.gdmissionsystems.com/space