GENERAL DYNAMICS SATCOM Technologies

STATIC LOAD & DEFLECTION TEST OF 1.2M

SERIES 1120 ANTENNA SYSTEM

TR-430

June 16, 2010

Revision 0

Static Load & Deflection Test of 1.2m Series 1120 Antenna System

Table of Contents

1.0 Introduction and Purpose
2.0 Test Set-Up and Procedure
3.0 Summary of Results
Figure 3.1 Antenna Geometry
Figure 3.2 Test Set-Up5
Figure 3.3 Report Nomenclature
Table 3.1 Test A & B Deflection Data 6
4.0 Analysis7
4.1 Wind Loads7
Figure 4.1.1 JPL Output7
Figure 4.1.2 Series 1120Test Set-Up7
4.2 Beam Pointing Error
Table 4.2.1 Pointing Error
4.3 Wind Speed Scaling
Table 4.3.2 Scaled Angles
4.4 dB Loss
Table 4.4.1 dB Loss10
4.5 Survival Wind Speed10
Figure 4.5.1 Survival Wind Load10
5.0 References
Appendix A Additional Images
Appendix B Detailed Calculations

Static Load & Deflection Test of 1.2m Series 1120 Antenna System

1.0 Introduction and Purpose

This report documents the deflection test of the 1.2 meter, Series 1120 antenna system. The antenna system was tested using loads equivalent to wind speeds of 40 and 125 mph in the axial and yaw directions. Figure 3.1 depicts the Series 1120 antenna geometry.

2.0 Test Set-Up and Procedure

The antenna was constructed and mounted horizontally to the test fixture as shown in Figure 3.2. Four digital indicators were placed around the circumference of the antenna dish at the ends of the major and minor axes. A fifth indicator was placed below the mast pipe so that its contribution to the antennas deflection could be subtracted. The indicator positions are also shown in Figure 3.2. Figure 4.1.2 shows the antenna prior to loading. Additional images of the constructed antenna and test set-up can be found in Appendix A.

The axial and yaw tests were completed twice for improved accuracy. The appropriate load was applied to the center of the dish to simulate the axial force for each of the test wind speeds. The yaw moment experienced around the mast pipe was tested by applying the 40 mph load 12 inches from the center of the dish (See Figure 3.2). Figure 3.3 illustrates the positive sign convention used in these tests and contains force and moment nomenclature.

All digital indicators were zeroed before each test. The load was applied to the reflector and the indicator displacements were recorded. This method was followed for each load case in Tests A and B. The deflection data can be found in Table 3.1 and the detailed calculations for the antennas rotation in the azimuth and elevation directions can be found in Appendix B.

3.0 Summary of Results

The deflections from the two tests were averaged to provide more accurate results. The series 1120 antenna yielded a beam pointing error of 0.0735° under a 40 mph axial load that resulted in a 0.04 mid-band dB loss at 14.25 GHz. A beam pointing error of 0.4849° under a 40 mph yaw load yields a 1.87 mid-band dB loss at 14.25 GHz. Scaled pointing errors and dB losses for 30 and 50 mph can be found in Table 4.4.1

Survival of the series 1120 antenna depends upon the winds attack angle and speed. The 1120 series can survive wind speeds up to 125 mph within an attack angle range of 0° to 55°. Within the wind attack range of 55° to 120°, the survival wind speed reduces to 86 mph where rotation around the mast pipe will occur. No permanent structural damage was observed for either test case. Re-pointing will be required if the antenna weathers a wind speed of 8 mph at 120°.

Figure 3.1 Antenna Geometry

Figure 3.2 Test Set-Up

PLAN VIEW

Figure 3.3 Report Nomenclature

Toot	Wind	Direction	Digital Indicator (inch)						
(mph)		Direction	1	2	3	4	5		
А	40	40	Axial	-0.0570	-0.0220	0.0005	-0.0160	0.0010	
			Yaw	0.1685	-0.0025	-0.2525	0.0290	0.0020	
В	40	40	Axial	-0.0560	-0.0455	0.0055	0.0095	0.0035	
			Yaw	0.1595	-0.0040	-0.2315	0.0205	0.0010	

Table 3.1 Test A & B Deflection Data

SATCOM Technologies

4.0 Analysis

4.1 Wind Loads

Wind loads are determined by the JPL Computer Program. JPL determines wind forces and moments based upon wind speed, wind direction, dish size, and antenna geometry. The antenna geometry includes the axial, vertical, and lateral offset distances from the mast pipe centerline. Figure 4.1.1 shows the JPL output for the Series 1120 antenna.

🔍 [Inactive	WIND_2.EX	Æ]						
Series 11 Wind Spee Vert Offs All value	120 Ana ed 40.0 set 0.0 es shown	alysis by 3 mph Dis 3 feet Lat below are	06-08 h Size Offset maximum a	-2010 08: 1.2 meters 0.0 feet bsolute va	13:02 Axial Offs lues	et 0.5	feet	
ang	l e s	forc	es (1)	bs.)	momen	t s < f	t. 1 b s.)	
e 1	az	f ×	fу	fz	mх	му	M 2	
		axial	lateral	lift	roll	pitch	yaw	
0	55	82						
0	120		11					
60	0			71				
90	90				29			
60	180					32		
0	120						32	
								_
🔍 [Inactive	WIND_2.E	(E]						
© [Inactive Series 11 Wind Spec Vert Offs All value	WIND_2.EX 120 Ana ed 125.(set 0.(es shown	Æ] alysis by ð mph Dis ð feet Lat below are	06-08 h Size Offset maximum a	-2010 08: 1.2 meters 0.0 feet bsolute va	16:34 Axial Offs	et 0.5	feet	
Series 11 Wind Spec Vert Offs All value ang	WIND_2.EX L20 Ana ed 125.0 set 0.0 es shown les	Æ] alysis by Ø mph Dis Ø feet Lat below are f o r c	06-08 h Size Offset maximum a e s < 1 1	-2010 08: 1.2 meters 0.0 feet bsolute va bsol. >	16:34 Axial Offs lues momen	et 0.5 ts (f	_ feet t.lbs.)	
© [Inactive Series 11 Wind Spee Vert Offs All value a n g e l	WIND_2.EX L20 Ana ed 125. set 0.0 es shown 1 e s a z	KE] alysis by 3 mph Dis 3 feet Lat below are forc fx	06-08 h Size Offset maximum a e s (1) f y	-2010 08: 1.2 meters 0.0 feet bsolute va bsolute va f z	16:34 Axial Offs lues momen mx	et 0.5 ts (f my	_ feet t. 1 b s.) m z	
© [Inactive Series 1] Wind Sper Vert Offs All value a n g e l	WIND_2.EX 120 Ana ed 125.0 set 0.0 es shown 1 e s a z	Æ] alysis by ð mph Dis ð feet Lat below are f o r c f x axial	06-08 h Size Offset maximum a e s < 1 1 f y lateral	-2010 08: 1.2 meters 0.0 feet bsolute va bs.) f z lift	16:34 Axial Offs ilues momen mx roll	et 0.5 ts (f my pitch	_ feet t. l b s.) m z yaw	
© [Inactive Series 11 Wind Sper Vert Offs All value a n g e l	WIND_2.EX 120 And ed 125.0 set 0.0 es shown 1 e s a z 55	E] alysis by 3 mph Dis 3 feet Lat below are f o r c f x axial 797	06-08 h Size Offset maximum a e s (1 1 f y lateral	-2010 08: 1.2 meters 0.0 feet bsolute va bs.) f z lift	16:34 Axial Offs lues momen mx roll	et 0.5 ts(f my pitch	_ feet t.lbs.) mz yaw	
en [Inactive Series 11 Wind Speg Vert Off: All value a n g e 1 0	• WIND_2.EX 120 And ed 125. set 0.0 es shown 1 e s a z 55 120	KE] alysis by 3 mph Dis 3 feet Lat below are f o r c f x axial 797	06-08 h Size Offset maximum a e s < 1 i f y lateral 104	-2010 08: 1.2 meters 0.0 feet bsolute va bs.) f z lift	16:34 Axial Offs lues momen mx roll	et 0.5 ts (f my pitch	_ feet t. 1 b s.) m z yaw	
© [Inactive Series 11 Wind Spec Vert Offs All value a n g e l 0 0 60	2 WIND_2.EX (20 Ana ed 125.(set 0.(es shown 1 e s a z 55 120 0	E] alysis by d mph Dis d feet Lat below are f o r c f x axial 797	06-08 h Size Offset maximum ai e s (1 i f y lateral 104	-2010 08: 1.2 meters 9.0 feet bsolute va b s.) f z lift 689	16:34 Axial Offs lues momen mx roll	et 0.5 ts <f my pitch</f 	feet t. l b s.) m z yaw	
© [Inactive Series 11 Wind Sper Vert Offs All value a n g e 1 0 0 60 90	2 WIND_2.EX 120 And 25 .d 25 .d 26 .d 27 .d 27 .d 28 .d 29 .d 28 .d 29 .d 29 .d 29 .d 29 .d 20 .d 2	KE] alysis by 3 mph Dis 3 feet Lat below are f o r c f x axial 797	06-08 h Size Offset maximum a e s (1) f y lateral 104	-2010 08: 1.2 meters 0.0 feet bsolute va b s.) f z lift 689	16:34 Axial Offs Iues momen mx roll 285	ts (f my pitch	_ feet t. l b s.) m z yaw	
er [Inactive Series 11 Wind Spec Vert Off: All value a n g e 1 0 0 60 90 60	2 WIND_2.EX 120 And 2d 125. set 0. 2es shown 1 e s a z 55 120 0 90 180	KE] alysis by 3 mph Dis 3 feet Lat below are f o r c f x axial 797	06-08 h Size Offset i maximum a e s (1 1 f y lateral 104	-2010 08: 1.2 meters 0.0 feet bsolute va bs.) f z lift 689	16:34 Axial Offs lues momen mx roll 285	et 0.5 ts <f my pitch 311</f 	_ feet t. 1 b s.) m z yaw	

The maximum axial force is achieved when the wind is attacking the antenna reflector from an elevation of 0° and a 55° azimuth direction. Through SATCOM's wind tunnel testing of parabolic antennas, the drag coefficient is highest at these two angles (El: 0°, Az: 55°). For the 40 mph axial case, 82 lbs was loaded at the reflectors center, and 32 lbs was loaded 12 inches off-center for the yaw case. 797 lbs was axially loaded to simulate a survival wind speed of 125 mph. The fully constructed antenna is shown below in Figure 4.1.2 with the digital indicators placed around the dishes circumference and below the mast pipe.

Figure 4.1.2 Series 1120 Test Set-Up

4.2 Beam Pointing Error

The deflection of the antenna is reduced to angles of rotation along the elevation and azimuth axes. These rotations are determined by dividing the net deflection by the distance between the points along the axis, and finding the corresponding angle. This calculation can be seen below for Test A's axial azimuth angle, with detailed angle calculations located in Appendix B.

$$48''$$
-0.0570'' 0.0005''
$$\theta_{A} = \tan^{-1} \left[\frac{|-0.0570 - 0.0005|}{48} \right] = 0.0686^{\circ} \qquad Equation \ 4.2.1$$

For the elevation axis, the rotation of the mast pipe is subtracted from the rotation of the dish. This serves as a correction factor for the elevation rotation so that the vector sum between the two rotations can be found.

For Test A's axial case the elevation rotation was -0.0029° and the azimuth rotation was 0.0686°. The vector sum of the two rotations is:

$$(0.0686^{2} + (-0.0029)^{2})^{1/2} = 0.0687^{\circ}$$
 Equation 4.2.2

An excel spreadsheet was used to compute all of the elevation and axial angles, and to average the pointing error between tests A and B. Detailed calculations that the excel sheet uses can be found in Appendix B for Test A's axial directions. The calculated angles can be seen in Table 4.2.1.

SATCOM Technologies

	Wind		Pointing Error Calculations (²)									
Test Speed (mph)		Direction	Ele	evation Error	l P	-ixture lotation	Net	t Elevation Error	A	zimuth Error	Po E	inting Fror
A 40	40	Axial	θ _D	0.0066	θ_{T}	0.0095	θ_{E}	-0.0029	θ_{A}	0.0686	θ	0.0687
	40	Yaw	θ _D	0.0347	θ_{T}	0.0191	θ_{E}	0.0156	θΑ	0.5025	θ	0.5028
D	D 40	Axial	θ _D	0.0606	θ_{T}	0.0334	θ_{E}	0.0272	θ_{A}	0.0734	θ	0.0783
B4	40	Yaw	$\theta_{\rm D}$	0.0270	θ_{T}	0.0095	θ_{E}	0.0174	θΑ	0.4667	θ	0.4670
Average		Axial	$\theta_{\rm D}$	0.0336	θ_{T}	0.0215	θ_{E}	0.0121	θ_{A}	0.0710	θ _{ΑΧ}	0.0735
		Yaw	θ	0.0309	θτ	0.0143	θ_{E}	0.0165	θΑ	0.4846	θ _{YAW}	0.4849

Table 4.2.1 Pointing Error

4.3 Wind Speed Scaling

Static load testing was performed for a steady state wind speed of 90 mph. Assuming there is a linear relationship between the wind load and angle of rotation, rotations for various wind speeds can be computed. There is an exponential relationship between wind speed and its corresponding static load as seen in Equation 4.3.1.

$$F = 0.00256 * V^2 * C_A * A$$

Equation 4.3.1

Where F is the load in pounds, V is the wind speed in mph, C_A is the drag coefficient, and A is the reflector area in ft². The averaged axial and yaw angles for 40 mph were scaled to 30 and 50 mph. This was done by multiplying the the 40 mph angle by a correction factor of $(30/40)^2$ for the 30 mph case. The scaled angles can be found below in Table 4.3.1.

Scaled Angles						
Direction	Speed (mph)	Beam Pointing Error (º)				
	30	0.0413				
Axial	40	0.0735				
	50	0.1148				
	30	0.2728				
Yaw	40	0.4849				
	50	0.7577				

Table	4.3.1	Scaled	Angles
1 4010		Searea	ingres

4.4 dB Loss

The dB losses from peak gain were computed by a Radio Frequency (RF) Engineer for the calculated and scaled angles. The dB losses can be found below in Table 4.4.1

dB Loss from Peak Gain							
Direction	Speed (mph)	Beam Pointing Error (º)	dB Loss @ 14.25 GHz				
	30	0.0413	0.02				
Axial	40	0.0735	0.04				
	50	0.1148	0.10				
	30	0.2728	0.59				
Yaw	40	0.4849	1.87				
	50	0.7577	4.57				

4.5 Survival Wind Speeds

The Series 1120 antenna survived a 125 mph axial wind load with out failing. Figure 4.5.1 depicts the 797 lb survival wind load placed on the reflector. The reflector and mount did not sustain any permanent deformation.

Figure 4.5.1 Survival Wind Load

The antenna was also able to withstand an 86 mph equivalent yaw load of 147 lbs. before the antenna slipped around the mast pipe. The antenna was able to be re-pointed since it only rotated around the mast pipe and did not sustain any structural deformations while under the load.

5.0 References

Prodelin Technical Report TR101 "Wind Design Loads for VSAT Antennas", 1988.

Jet Propulsion Laboratories (JCL) Internal Memorandum JCL CP-3, "Preliminary Report on Paraboloidal Reflector Antenna Wind Tunnel Tests" Feb 1962.

General Dynamics

Appendix A Additional Images

Image A.1 Side View

Image A.2 Yaw Load

Image A.3 Axial Load

Image A.4 Mast Pipe Indicator

Image A.5 Digital Indicator 1

Image A.4 Az/El Mount

Appendix B Detailed Calculations

- ELEVATION POINTING ERROR

$$\frac{2}{\Theta_{D} = \tan^{-1} \left[\frac{-0.0220 - (-0.0160)}{52} \right]^{2}} = 0.0066^{\circ}$$

- TEST FIXTURE ROTATION

$$\Theta_{T} = \tan^{-1} \left(\frac{0.0010}{6} \right) = 0.0095^{\circ}$$

- NET ANTENNA ROTATION

- AZIMUTH POINTING ERROR

- VECTOR SUM

$$\theta = \sqrt{0.0686^2 + (-0.0029)^2}$$

 $\theta = 0.0687^\circ$