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Abstract—This paper presents “Huxley,” a production robot 
control architecture that was developed by Bluefin Robotics for 
its fleet of autonomous underwater vehicles (AUVs). Huxley was 
designed with flexibility foremost in mind, allowing it to be easily 
adapted and reliably deployed on a wide range of platforms. The 
architecture follows a layered paradigm, providing a clean and 
logical abstraction for the major control functions. It also 
provides an interface for interaction with the layers, enabling 
expansion of the core capabilities of the architecture. This 
interface provides users the flexibility to develop smart payloads 
capable of utilizing available data, modifying the behavior of the 
AUV and even exploring new frontiers of autonomy.  

Keywords—control architectures, layered architectures, 
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I.  INTRODUCTION 
Control architectures for autonomous mobile robots have 

been an active area of research and development for the better 
part of three decades. While many of the existing published 
architectures were innovative in their time and helped influence 
the current state-of-the-art, the vast majority of these 
architectures has been focused on academic research and has 
never been deployed on commercial production systems. 
Furthermore, while arguably applicable to all mobile robotic 
platforms, few of these architectures have been demonstrated 
on autonomous underwater robots. This paper presents a 
control architecture, dubbed “Huxley,” that was specifically 
designed for use on commercially-available, production 
autonomous underwater vehicles (AUVs). In addition to 
describing the motivation and design of Huxley, this paper will 
compare and contrast Huxley with other well-known robot 
control architectures. 

Bluefin Robotics began development of Huxley in 2003 as 
a next generation, flexible control system for its fleet of AUVs. 
Owing to its nature as a production software system, Huxley 
had a number of important constraints placed on it, the most 
fundamental of which was the need for flexibility. If Huxley 
had not been able to accommodate the current and future 
AUVs manufactured by Bluefin, or if the cost of doing so had 
been too high, then Huxley would have had a short life indeed. 
An interesting consequence of Huxley’s need for flexibility 
was that it drove many other characteristics that are generally 
associated with good software systems. Flexibility meant that 

Huxley had to be robust and reliable on many different 
platforms; flexibility meant that it had to be easily extensible to 
accommodate new hardware and new system capabilities; 
flexibility meant that it had to be maintainable such that 
improvements or modifications in one area would not cascade 
across the system; and flexibility meant that it had to be 
testable to ensure the integrity of Huxley across all deployed 
systems. With these goals in mind, Bluefin developed Huxley 
over the course of several years. Huxley began shipping in 
early 2005 and has since proven itself to be the flexible control 
system that was intended. 

The Huxley control architecture has two core layers: a 
reactive layer and an executive layer (Fig. 1). The reactive 

 
Fig. 1: The Huxley Architecture 
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layer performs tight-loop control of the system with little 
notion of maintained state. The reactive layer contains 
individual controllers that interface with hardware sensors and 
actuators to issue commands and receive data/feedback at a 
high frequency. Built on top of these controllers, though still in 
the reactive layer, is the dynamic control system that monitors 
and adjusts the AUV’s position and attitude so as to maneuver 
the AUV as desired by the executive layer. The executive layer 
is responsible for more protracted, state-based activities, 
including navigation, behavior control and a supervisor 
function. Navigation fuses all appropriate information over 
time to maintain the best estimate of the vehicle’s position and 
attitude. Behavior Control decomposes high-level plans into 
actions to be accomplished by the reactive layer. A Supervisor 
monitors the overall state and health of the system. 

One of the most important aspects of the Huxley 
architecture is that it provides the flexibility to expand the core 
reactive and executive layers via a standard interface (Fig. 1). 
This interface is built on the core Huxley infrastructure and 
works organically within the architecture. It provides the 
opportunity for users to create two things: one, an expanded 
executive layer that issues commands to the reactive layer; 
and/or two, a higher-level planning/deliberative layer that can 
issue commands to the executive or reactive layers. 

These aspects of Huxley and its use on AUVs will be 
explored in more detail in the following sections. We begin 
with a discussion of the design goals for Huxley, followed by a 
detailed examination of the Huxley architecture and how it 
meets the designed goals. We then delve into a core enabling 
technology of the Huxley implementation, the communications 
protocol, and show how it fits into a working Huxley system. 
Throughout the paper, we will touch on Huxley’s relationship 
to other related work in the literature. 

II. HUXLEY DESIGN MOTIVATIONS 
At the time of its design in 2003, the overarching 

requirement for Huxley was that it be applicable to all of 
Bluefin’s major AUV platforms and allow for easy 
customizations of each delivered system to meet specific 
customer needs. The platforms and their applications, described 
below, are varied and help illustrate the motivation behind the 
Huxley architecture. 

Bluefin’s platforms include the Bluefin-9, Bluefin-12S, 
Bluefin-12D and Bluefin-21 classes of torpedo-style 
autonomous vehicles (Fig. 2), each categorized by the outside 
diameter of its hull (i.e., 9, 12 and 21 inches). These AUVs are 
generally employed as data collection platforms by customer 
with very different needs. Defense customers have utilized the 
platforms for applications such as mine-countermeasures 
(MCM) and battlespace preparation (BP) activities in shallow 
water, though interest is also expanding to areas such as 
persistent surveillance and anti-submarine warfare (ASW). 
Commercial customers are focused on applications such as 
shallow- and deep-water hydrographic surveys and collecting 
data for the oil and gas industries, among others. Scientific 
customers are interested, for example, in data for 
oceanographic research, developing new underwater sensors 
and data-collection sub-systems (e.g., new imaging sonars), 

 
 

 
 

 

 
Fig. 2: Top to bottom: Bluefin-9, Bluefin-12D, Bluefin-21, and HAUV. 
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and conducting research on single- and multi-vehicle 
autonomy. Huxley was also intended to be applied to Bluefin’s 
Hovering Autonomous Underwater Vehicle (HAUV) class [1] 
that uses thrusters along three axes to provide five degree-of-
freedom control of the vehicle allowing it to hover and 
maintain position relative to other objects (Fig. 2). Applications 
for the system include ship hull inspection, port and harbor 
security, and infrastructure assessment. While outwardly the 
control of the HAUV may appear very different from that of 
Bluefin’s other AUVs, the goal was for HAUV to share a 
common architecture and the vast majority of common code 
with the torpedo-style platforms. 

The requirement for Huxley to be able to support multiple 
platforms 1  (current and future), the varied applications for 
those platforms, and individual customizations for each 
delivered system translated to the overarching design goal of 
flexibility. 

Flexibility as a design goal, however, is of limited benefit in 
and of itself. In the extreme, total flexibility means total 
generality, the absence of any significant supporting 
architecture or infrastructure – clearly of limited benefit. 
Rather, flexibility is most useful when it guides the 
development of an architecture by informing and balancing 
other major design goals and decisions.  

For Huxley, flexibility of the control architecture helped 
balance other requirements, including:  

• Reliability – In order to truly be said to support 
multiple platforms/customizations, Huxley had to be 
able to do so reliably. That meant having common 
elements and infrastructure to provide a well-tested and 
proven core software system. 

• Extensibility – Huxley had to be able to accommodate 
new capabilities, platforms, and next-generation 
enhancements. 

• Maintainability – If Huxley were to become more 
difficult to maintain over time as the number of 
configurations and customizations increased, Huxley 
would not have been truly flexible or met the design 
need. 

• Testability – Without the ability to test Huxley quickly 
and easily across the supported platforms and 
configurations, extending and maintaining the system 
while keeping it reliable would have been a practical 
impossibility. 

Other important design considerations for software systems 
include usability, efficiency and portability. While these are 
important attributes that played a role during the detailed 
design and implementation of Huxley, they were not major 
players in the high-level architectural design, our focus in this 
paper. 

 Given the design goals stated above, it is not surprising that 
Huxley had to be architected with a proper level of modularity 

                                                           
1 Bluefin also manufactures vehicles which, due to particular hardware, 
software, or program requirements, do not use Huxley. 

and significant reusability – a design philosophy even more 
important because it was shared with Bluefin AUV hardware 
architecture and overall system configuration. Luckily, there 
was no need to completely reinvent the wheel in this regard. At 
that time, in 2003, mobile robot control architectures had been 
an active area of research for several decades with major 
principles fairly well established, if not universally accepted 
(see [10] and [11] for relevant discussions). Two such 
principles for autonomous, physically embodied mobile robots 
(or “situated agents,” if you prefer) may be expressed as 
follows: 

• Maintain appropriate interaction with the world. 

• Perform activities at the appropriate timescales. 

The state of the real world (i.e., the robot’s environment) is 
to a certain extent unknown, uncertain, unconstrained and 
unobservable. Regardless of the control algorithms and 
decision making algorithm that a robot employs, it must make 
observations of the world around it and take actions within that 
world, and it must do so at a frequency that is appropriate to the 
dynamics of its environment. An autonomous robotic car 
driving down a busy freeway, for example, must both observe 
lane markings, signs, and other cars, and act to get to its goal 
safely; failure to observe or act would be disastrous. No less for 
an AUV skimming the ocean floor thousands of meters below 
the surface, or operating within a busy harbor environment – it 
must interact with its environment to accomplish it goals 
safely. 

The activities that a robot must undertake in interacting 
with the world and accomplishing its objectives take place on 
different timescales. On a very short timescale, the robot must 
send commands to its actuators and sensors and receive back 
status/data in order move and interact with the physical world. 
This level of control is sometimes referred to as “reactive” 
owing to its short timescale, tight coupling with the physical 
world, and little-to-no maintained state.  

On a longer timescale, the concern is achieving the goals 
set forth for the vehicle (e.g., driving to a destination, or 
surveying a region of the ocean floor) while maintaining the 
system within certain constraints of safety, execution time, 
battery capacity, etc. These goals may be expressed 
programmatically, though they are most useful and flexible 
when expressed in a high-level plan representation. In the latter 
case, the controller must decompose the plan representation 
into lower-level tasks and ultimately actions to be taken by the 
reactive layer. Due to its role in the execution of plans and 
accomplishment of system goals, this layer is often referred to 
as the “executive.” It is often viewed as the mediator between 
plan generation (whether done by human or otherwise) and the 
lower-lever reactive layer. 

On a timescale greater than that of the executive layer is the 
element of the robot typically concerned with establishing the 
goals for the system. These goals typically involve some sort of 
planning such as path planning, resource management, 
constraint management, task prioritization, high-level fault 
detection and recovery, scheduling of activities, or high-level 
coordination with other elements of the system. Not 
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surprisingly, this layer of control is often referred to as the 
“planning” or “deliberative” layer. 

The notions of layering the robot control architecture 
according to timescales of activity and maintaining an 
appropriate level of interaction with the environment helped 
guide the structure of the Huxley architecture. They also helped 
balance the flexibility of the system with the need for 
reliability, extensibility, maintainability and testability. In the 
following section we explore how the design goals and notion 
of layered control were applied to the Huxley architecture. 

III. HUXLEY’S LAYERED ARCHITECTURE 
The power of Huxley, or any good software architecture, is 

how it helps constrain the solution space from everything 
possible to a subset appropriate to the problem domain. For 
Huxley, this meant focusing on the problem of controlling real 
world AUVs for an ever-expanding customer base with new 
requirements and customizations while also allowing for future 
enhancements. While daunting at first, as we shall see in the 
following paragraphs, the major elements of Huxley fell out of 
the basic requirements for the system.  

A. The Reactive Layer 
At the most basic level, Huxley has to be able to control 

AUV hardware devices – sensors and actuators – that directly 
interact with the physical world. The issuing of commands and 
receipt of data needs to be at a high frequency with low latency 
to make the vehicle accurate and responsive in its actions while 
also providing high resolution data to customers. These needs 
argued for a reactive layer of control (Fig. 1). While useful 
conceptually, a monolithic reactive control layer would have 
been of limited benefit when it came to flexibility, extensibility 
and reusability. Within the reactive layer, therefore, Huxley 
requires a control module (or “driver”) for each hardware 
component. As an example, see Fig. 3 in which the reactive 
layer of a hypothetical vehicle contains three individual drivers, 
one each for a GPS unit, a sonar, and a thruster. Note that, in an 
actual AUV, Fig. 3 would be expanded with drivers controlling 
navigation sensors (e.g., inertial measurement unit or inertial 
navigation system, Doppler velocity log, pressure sensor), 
actuators (e.g., propulsors, thrusters), communications 
subsystems (e.g., acoustic modems, satellite communications) 
and data collection sensors (e.g., sidescan sonar, synthetic 
aperture sonar, multibeam sonar, sub-bottom profiler, forward 
look sonar, water quality sensors). 

In addition to drivers, the reactive layer includes a Dynamic 
Control component [2] that contains the low-level control 
loops for stable vehicle flight. On Bluefin’s torpedo-style 
vehicles, for example, Dynamic Control is responsible for 
stable depth and altitude maintenance, as well as a variety of 
horizontal control modes such as heading, trackline, trackcircle 
and waypoint following. The Dynamic Control module, 
however, can implement whatever low-level control scheme is 
appropriate to the class of AUV. Dynamic Control of the 
HAUV platform, for example, is unique (owing to its multiple 
degrees of freedom and its use of an object-relative coordinate 
frame) and, yet, its Dynamic Control module fits naturally 
within Huxley. 

Huxley’s reactive layer also serves as the boundary where 
specialized communications protocols and mechanisms are 
translated to a common, shared protocol. This is illustrated in 
Fig. 3 where the communication pathway between drivers and 
their corresponding devices is labeled as “Specialized 
Communications” (solid arrows) while communication 
between Dynamic Control and the Thruster Driver is labeled as 
“Huxley Communications” (represented as a white arrow). 
Some hardware devices may share a communications protocol 
(e.g., most GPS units use NMEA [3] messages), but many use 
protocols unique to the device or vendor. Part of the 
responsibility of a Huxley driver is translating these hardware-
specific interfaces to a common communications protocol 
(described later in this paper). The notion of keeping non-
standard interfaces at the edges of the Huxley architecture 
(here, the boundary between devices and drivers) is a key to 
Huxley’s flexibility. Substituting, adding or removing a 
hardware device is relatively straightforward as major changes 
are localized to the driver. Localizing changes also promotes 
extensibility, maintainability and reliability of the software 
system since changes do not propagate or destabilize the entire 
system.  

B. The Executive Layer 
Another core capability of Huxley is mission execution. A 

Huxley-based AUV had to be able take a high-level mission 
plan, decompose it into executable elements that it then 
provides to the reactive layer along with data for proper 
control of the vehicle’s hardware. This capability is the 
purview of Huxley’s executive layer of control (Fig. 1). Similar 
to the reactive layer, though, it is not sufficient simply to state 
that there is such a layer; the components and organization of 
the executive layer must promote the desired qualities of the 
system. 

Huxley’s executive layer is composed of three major 
elements: Behavior Control, Navigation, and a Supervisor. 
Behavior control is responsible for decomposing high-level 
plan representations into control commands that are passed to 
the reactive layer for execution on the hardware. The plan 
representation may be generated several different ways:  

Fig. 3: Huxley's Reactive Layer interacting with hardware. 
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1. By a human using an application. For example, 
Bluefin has a chart-based, graphical Mission Planner 
application that serves this purpose. As an alternative, 
Mission Planner also supports open external interfaces 
for planning via other tools.2 

2. Via an automated mechanism. Examples of this are 
the deliberative/planner layer of the architecture 
creating the plan, or an automated external application 
doing so via an available interface. 

Regardless of where and how the plan is generated, it is the 
responsibility of Behavior Control to decompose the plan into 
control commands that it sends to Dynamic Control (Fig. 4). 
Note that these commands utilize the common Huxley 
communications protocol (white arrows). Behavior control is 
also able to send Huxley commands to device drivers in the 
reactive layer to control various parameters (such as device 
operating settings and data logging) that are represented in the 
mission plan. In order to send the right commands at the right 
time, Behavior Control must monitor the AUV’s progress 
based on time, position, or other factors.  

Navigation is responsible for fusing and filtering all 
available navigation sensor inputs into the best estimate of the 
vehicle’s position, attitude and rates, providing these data to 
other components of the system. One component is Behavior 
Control, which uses the data to help monitor mission plan 
execution. The other is Dynamic Control, which utilizes the 
data as feedback to adjust control parameters to ensure that the 
AUV is following the control rules and maintaining proper 
stability. Note that, to preserve the clarity of Fig. 4, the inputs 
to Navigation are not drawn. In a fully elaborated diagram, 
one would see Huxley communications from the GPS Driver 
to Navigation. Navigation would also be seen consuming data 
from other sensors (e.g., Doppler velocity log, pressure/depth 
sensor, inertial unit, etc.) in order to produce its estimate of 
state. 

The final element of the executive layer is the Supervisor, 
a component responsible for vehicle lifecycle management 
and health and status monitoring. In other words, it supervises 
the overall state of the vehicle. As shown in Fig. 4, the 
Supervisor communicates with all of the other modules in the 
system, both in the executive and reactive layers, using 
Huxley’s communication protocol (white arrows). The 
Supervisor monitors the components to ensure that they are 
functioning properly and reports overall health and status of 
the system. While the Supervisor is not directly responsible for 
running missions (that is Behavior Control’s job), it is 
responsible for coordinating mission start and stop by making 
certain that system and all sub-components are in the proper 
state. 

The elements of Huxley’s executive layer (Behavior 
Control, Navigation, and Supervisor) constrain the system in a 
useful manner while still allowing flexibility. Consider 
Navigation, as an example. The Huxley architecture says that 
there must be a component responsible for maintaining an 

                                                           
2 Two such interfaces are: The Common Operator Interface Navy 
(COIN), and the Mine Warfare and Environmental Decision Aids Library 
(MEDAL).  

estimate of the vehicle’s position/attitude and providing those 
data to other components. The architecture, however, does not 
require any specific implementation of Navigation. One could 
develop a navigation module based on the use of an inertial 
navigation system (INS), an inertial measurement unit (IMU) 
and compass, use of long baseline (LBL) beacons, or other 
schemes. At Bluefin, for example, we have developed multiple 
navigation modules for our torpedo-style vehicles, including 
both INS-based [4] and IMU/compass-based versions 
providing global vehicle position. Depending on the 
customer’s requirements, we can simply “drop-in” the 
appropriate module for the vehicle. As a further example, 
there is Bluefin’s HAUV, which navigates relative to other 
objects, not in a global frame like the torpedo vehicles. The 
HAUV Navigation module fits just as cleanly in the Huxley 
architecture as any of the other navigation modules. 

Huxley’s executive layer of the Huxley architecture 
provides three core elements for an AUV: Navigation; mission 
plan decomposition and execution (Behavior Control); and 
system health and status management (Supervisor). The 
architecture allows extending capabilities by dropping-in 
appropriate implementations for each of these elements. It also 
facilitates reliability and maintainability through the reuse of 
common components within a stable framework. 

C. The Standard Payload Interface: Another Level of 
Flexibility 
The reactive and executive layers form the stable core of 

the Huxley architecture. There is plenty of flexibility in 
choosing hardware and matching it to Huxley drivers and 
other components to meet customers’ requirements. A Huxley 
vehicle with a complete reactive and executive layer is a fully 

Fig. 4: Huxley’s Executive Layer communicating with an example 
Reactive Layer. 
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operational AUV able to take mission plans and execute them 
successfully, thereby providing the customer with the desired 
data. Bluefin has implemented a large set of Huxley 
components and a rich plan representation language capable of 
expressing a myriad of different missions that are executed by 
Behavior Control.  

As flexible as the core Huxley capabilities are, they are not 
sufficient for some of our customers – in particular those who 
are developing their own payload hardware or are interested in 
developing new behavioral modes or higher-level deliberative 
control functions. For these customers, Huxley departs from 
the typical notion of a layered control architecture to provide 
an external interface to the executive and reactive layers. This 
Standard Payload Interface (Fig. 5) utilizes the Huxley 
communications protocol (white arrows) with components in 
the reactive and executive layers. It also provides an external 
interface for communications with the payload, ideally 
utilizing a messaging format that is easy for customers to use. 
Bluefin’s implementation of the Standard Payload Interface, 
for example, utilizes NMEA style messages. The Standard 
Payload Interface is an optional component that can be 
dropped-in for systems that require such capability, without 
necessitating changes to other components. As such, it is in-
line with the Huxley goals of extensibility, maintainability and 
reliability. 

The Standard Payload Interface provides communications 
with both the reactive and executive layers. At the reactive 
layer, the Standard Payload Interface receives data directly 
from Huxley drivers and provides those data across the 
payload communications channel; it does not send commands 
directly to Dynamic Control or the drivers. This asymmetry 
between data and commands is intentional and is motivated by 
the need to maintain safe, reliable core AUV control. If a 
payload were able to send commands directly to Huxley 
drivers, it could compromise the control and monitoring 

functions of the executive layer, leading to unpredictable 
behavior, reduced reliability and safety hazards.  

At the executive layer, the Standard Payload Interface 
translates control requests from the payload into Huxley 
messages to the executive layer components. These are 
“requests” rather than “commands” because the executive 
layer reserves the right not to honor them. If the payload, for 
example, were to ask the AUV to collide with the ocean floor, 
the executive layer would typically be within its rights not to 
do so. In general, however, the executive layer will attempt to 
fill requests faithfully, whenever possible. This give-and-take 
relationship between the payload and the Huxley executive 
layer is extremely powerful. It gives the customer the 
freedom/flexibility to experiment and develop “smart” 
payloads capable of receiving data and issuing complex 
commands, while keeping the core software systems and 
vehicle reliable and safe. Standard Payload Interface requests 
from the payload can include: stopping the mission, sending 
communications, changing the vehicle’s current actions, 
inserting new mission elements, etc. To aid the payload, data 
are also available from the executive layer including overall 
vehicle health and status from Supervisor, mission execution 
status from Behavior Control, and vehicle position/attitude 
from Navigation. These data can be logged by the payload as 
part of its data collection requirements, or used as an aid in 
formulating requests via the Standard Payload Interface. 

In the next section, we will examine some of the possible 
system enhancements enabled by the Standard Payload 
Interface. 

Fig. 5: Huxley’s Standard Payload Interface for interaction with the 
executive and reactive layers of the architecture. 

 
Fig. 6: Huxley’s Flexible Payload Layer communicating with other layers 

via the Standard Payload Interface. 
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D. The Flexible Payload Layer 
The Standard Payload Interface allows the addition of an 

optional third layer to the architecture that can serve various 
functions depending on the requirements for the system and the 
needs of the customer. This optional layer is completely at the 
control and discretion of the customer, constrained only by the 
data and commands available across the Standard Payload 
Interface.  

For customers developing their own sensor packages, the 
Flexible Layer may take the form of a “smart” payload. The 
customer can develop their own software to interface with their 
developmental sensor package and communicate with the core 
Huxley system via the Standard Payload Interface. In such a 
system, the payload package may need data from core systems 
(e.g., navigation data for localization, sound speed corrections, 
etc.) and commands to synchronize the payload’s behavior with 
the core Huxley system. Bluefin’s current implementation of 
the Standard Payload Interface provides a variety of data 
streams, and allows arbitrary user-defined payload commands 
to be embedded into mission plan representations and sent to 
the payload at desired points in the mission. 

For some applications, it may also be necessary for the 
smart payload to send command requests to the Executive 
Layer across the Standard Payload Interface. These commands 
could constitute small modifications to the executing plan 
localized in time. For example, upon seeing an object of 
interest on the ocean floor, the payload could request an in-
stride excursion to approach or get a different angle on the 
target. A payload performing localized modifications of the 
executing mission could be considered to constitute an 
“expanded” Executive Layer. Similar to the core Huxley 
Executive Layer, the payload relies on the high-level plan 
representation to define the overall mission, but enhances the 
capabilities of the Executive with appropriate modifications 
and in-stride excursions. 

Continuing along the spectrum of smart payloads, one 
eventually finds payloads capable of significantly modifying 
the mission plan, or alternatively, defining their own mission 
plans. These payloads effectively constitute a traditional 
Planning or Deliberative Layer for the architecture. They rely 
on the Huxley Executive and Reactive Layers for data and safe 
execution of requested actions, but are capable of generating 
(and possibly reasoning about) their own high-level plans. 
These are the payloads of customers interested, for example, in 
exploring the boundaries of planning, autonomy, and multi-
vehicle coordination.  

As we have seen in this section, the Huxley architecture 
promotes a reliable and maintainable core system that is also 
extensible, able to easily accommodate different hardware 
devices and software capabilities (e.g., navigation solutions) 
with clean localized changes. On top of this, Huxley provides 
the flexibility of a Standard Payload Interface that can be used 
to safely enhance the capabilities of the system with smart 
payloads that expand the Executive Layer or even constitute a 
full Planning Layer. 

A good software architecture, like Huxley, is important in 
achieving the desired qualities of a system – but so is the 
implementation. In the next section, we will examine a few of 
Huxley’s implementation details that help Huxley realize its 
potential as a robot control architecture. 

IV. STREAM-ORIENTED MESSAGING ARCHITECTURE: A 
HUXLEY ENABLING TECHNOLOGY 

Bluefin’s implementation of the Huxley architecture rests 
on a foundation of key infrastructure elements. One of the most 
vital of these is the Huxley messaging protocol, called the 
Stream-Oriented Messaging Architecture (SOMA) (and 
represented as white arrows in Fig. 3 through Fig. 6). SOMA is 
the communications “glue” that creates a unified system out of 
the elements of the Reactive Layer, Executive Layer, and the 
Standard Payload Interface. It is also vital to how Huxley 
achieves a high level of flexibility, extensibility, reliability and 
maintainability. 

SOMA is a publish-subscribe messaging protocol with a 
central dispatcher (called the SomaManager) that establishes 
peer-to-peer connections between applications (or processes). 
In the Huxley implementation, each component of the core 
system (i.e., device drivers, Dynamic Control, Behavior 
Control, Navigation, Supervisor, and Standard Payload 
Interface) is an independent application that uses SOMA for 
communications. Each Huxley application running on a 
computer connects with a SomaManager running on the same 
machine to indicate what messages it is publishing and to what 
messages it wishes to subscribe. The SomaManager is 
responsible for connecting applications publishing specific 
messages to other applications that wish to subscribe to those 
messages. 

Consider the example of the three Huxley applications 
shown in Fig. 7. The Navigation application (App1) informs 
SomaManager that it would like to receive (or subscribe to) 
GPS data. The CTD Driver (App2) informs SomaManager that 
it provides (or publishes) conductivity-temperature-depth 
(CTD) data, while the GPS Driver (App3) publishes GPS data. 
Seeing the match between subscriber and publisher, the 
SomaManager facilitates the creation of a peer-to-peer 
connection so that App1 (Navigation) gets its GPS data directly 
from App3 (GPS Driver). 

Due to the publish/subscribe nature of SOMA, there is no 
enforced synchronization mechanism between subscribers and 
publishers. Publishers provide data at frequencies that are 
appropriate to the type of data they produce and subscribers 
consume the data at that frequency for their processing. A GPS 
device, for example, outputting data at 1 Hz would usually 
translate to the Huxley GPS Driver publishing data at 1 Hz. An 
IMU or INS, on the other hand, which outputs data at 10’s of 
Hz may have a Huxley driver that publishes at that frequency 
or downsamples, if appropriate. 
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A. Types of SOMA Messages 
SOMA messages come in several varieties distinguished by 

their reliability and persistence. These distinctions are 
important to the proper function of a system and are described 
in more detail below. 

1) Reliability of Messages 
SOMA messages may either be reliable or unreliable, 

referring to the guarantee of receipt. Given an executing 
application publishing a reliable message, SOMA attempts to 
guarantee that any executing subscriber will eventually receive 
the message, if there exists sufficient bandwidth to send data. 
Unreliable SOMA messages do not have any guarantee of 
receipt. A subscriber will only receive an unreliable message if 
there is sufficient bandwidth to support its transmission. If not, 
the message will be dropped. 

Within each Huxley process, reliable SOMA messages 
have priority over unreliable messages. Pending reliable 
message publications will always be serviced before unreliable 
messages. Given limited bandwidth, this helps ensure that 
reliable messages (assumed to be of greater importance) reach 
their destination.  

2) Persistence of Messages 
Independent of reliability, SOMA messages may be either 

persistent or non-persistent. Persistent messages have values 
that endure beyond the immediate publication of the message. 
Consider the case of an application that has published a 
persistent message only once. Subsequent to this publication, a 
different application subscribes to this publication. Bandwidth 
permitting, the subscribing application will receive the value 
that was last published as it has persisted beyond the immediate 
publication event. In the case of non-persistent messages, 
applications that subscribe to such messages after the last 

publication will not receive the data that were most recently 
sent. 

SOMA message persistence provides a mechanism by 
which pertinent data can be transferred between applications 
without the need to synchronize start times or require that 
applications re-send the same (old) data every time a new 
application subscribes to a particular message. Such a 
mechanism would not only result in unnecessary message 
traffic but would also not be desirable for all types of data. 

3) Combinations of Reliability and Persistence 
The four combinations of reliability and persistence exist as 

distinct types of SOMA messages. 

• Measurement – Refers to unreliable, non-persistent 
SOMA messages. Measurements are intended for data 
that require frequent transmission and for which only 
the current value is of importance. Examples of such 
data include sensor readings such as the latitude and 
longitude provided by a GPS unit. It is arguably poor 
practice to make GPS data reliable as they are 
frequently updating and if one is dropped, the next may 
be received. In addition, old GPS positions may have 
little relevance to actual position, so persistence is not 
important. 

• Command – Refers to reliable, non-persistent SOMA 
messages. Commands are intended for data that are 
sent infrequently and require a guarantee of receipt, but 
have no value unless they are received in a timely 
fashion. An example would be a message telling 
Behavior Control to start a specific mission. If the 
system is functioning properly, then Behavior Control 
should reliably start the mission. If not, one would not 
want Behavior Control “spontaneously” starting a 
mission at a later time when the system may be 
functioning properly. 

• Status – Refers to reliable, persistent SOMA messages. 
Status messages are most applicable to data that are 
seldom published but whose values remain relevant 
long after publication. Such messages are often status-
related. Whenever a Huxley application, for example, 
changes its overall state (initializing, running, failed) it 
publishes it as a Status message. This is a key value 
that other applications need to see reliably, and whose 
value is relevant for long periods of time. 

• StreamCommand – Refers to unreliable, persistent 
SOMA messages. StreamCommands are used for 
rapidly published commands where the correct 
response to a dropped message is not to retry, but to 
wait for the next command. For example, the rapid 
changes to a thruster’s RPM would fall into this 
category. 

4) SOMA Interfaces (IFs)  
As part of Huxley’s SOMA implementation, there exists the 

notion of a SOMA Interface (IF). IFs bundle together messages 
of a particular type to create a grouping that is common to 
components within the architecture. While applications within 
the Huxley framework can certainly use individual SOMA 

Fig. 7: Example of SomaManager establishing a publish-subscribe 
connection between applications. 
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messages for communication, it is really the IFs that help 
facilitate the level of flexibility, modularity and reuse that is 
promised by the Huxley architecture. 

Consider the example of a Huxley driver for a conductivity-
temperature (CT) sensor. The driver must communicate with 
the hardware to get conductivity and temperature values that it 
publishes as Measurements. Grouping these two measurements 
into an IF (call it CondTempIF ) that represents data published 
by a CT sensor driver, allows drivers for different CT sensors 
to use the same IF. Bluefin has integrated multiple CT sensors 
on its AUVs. Even though each device has a different driver, 
the drivers all publish data using the same CondTempIF. This 
means that subscribers to CondTempIF can be agnostic as to 
the hardware and Huxley driver providing the data. It also 
means that the integration of a new CT sensor does not 
propagate changes beyond the driver itself.  

Another example, described earlier in the paper, is that of 
Navigation. Bluefin has developed several different navigation 
solutions for its torpedo-style vehicles, each of which is 
designed for different sensor suites and/or customer needs. 
Each version of Navigation, however, utilizes the same 
Measurement IF for publishing the navigation solution (i.e., the 
vehicle’s current latitude, longitude, depth, roll, pitch, yaw, 
velocities, accelerations, etc.). This means that no matter which 
version of navigation is employed in a system, other 
components (such as Behavior Control and Dynamic Control) 
can remain agnostic and unaffected. 

As we have seen, SOMA and the use of IFs are key 
technologies in the implementation of Bluefin’s Huxley 
architecture. As a publish-subscribe protocol, SOMA not only 
provides the messaging between core layers and components of 
the Huxley architecture, it does so in a way that promotes the 
desired flexible qualities of the system. Huxley can be extended 
with new functionality and configurations to meet customers’ 
needs while localizing changes and allowing significant reuse 
of components. Localizing changes and reusing components 
facilitates maintenance of the software and promotes reliability 
of the delivered systems. 

V. RELATED WORK 
Mobile robotic systems that interact with the world (AUVs 

being one type) have been an area of research interest for 
decades. Reference [4] provides a review of research touching 
on Artificial Intelligence and Robotics and explores 
foundational notions of situatedness, embodiment, intelligence 
and emergence. Within the wider field of Robotics, many 
investigators have explored the use of layered architectures 
including [5], [6], and [7]. Huxley, being a layered architecture, 
shares similarities with these. Reference [15] describes 
CLARAty, a two-layered architecture developed by NASA and 
its partners with the goal of establishing a system that is 
reusable across multiple platforms. This goal is shared with 
Huxley. The architectures, however, differ in that Huxley has 
two core layers and an interface for expanding the system with 
a third layer. Another well-known and popular approach to 
robot control is Behavior-Based Robotics [13], [14], which is 
founded, in part, on earlier work on a layered architecture 
called the Subsumption Architecture [12]. While Huxley 

overall is not a behavior-based architecture, the Behavior 
Control element in Huxley’s executive layer is very much in 
the style of a behavior-based controller. 

Reference [8] expands on earlier work by creating a three-
layered architecture that allows coordination with other robots 
at each layer of the architecture. The Huxley architecture, in 
contrast, requires the use of the Standard Payload Interface for 
interacting with the layers of the architecture. This is meant to 
keep the core Huxley systems stable and reliable while 
providing flexibility to expand the system. Another difference 
is that Huxley does not define an explicit planning layer but 
allows one to be defined as needed through the use of the 
Standard Payload Interface. Reference [9] further expands on 
[8] with a market-based planning layer. The market-based 
coordination mechanism described is one possible planning 
layer that could be added to Huxley via the Standard Payload 
Interface. Many others are possible.  

The Standard Payload Interface has been used on multiple 
Bluefin systems. References [16] and [17] are examples where 
the interface has been used directly for integration of smart 
payloads. Reference [18] describe work in which the MOOS-
IvP software system [19] is used to provide a planning layer of 
control via the Standard Payload Interface.  

VI. CONCLUSION 
This paper has described the Huxley robot control 

architecture, developed by Bluefin Robotics as a production 
software system for its fleet of AUVs. Huxley was designed 
with flexibility foremost in mind, but with the understanding 
that other qualities (e.g., reliability, extensibility, 
maintainability, modularity, and reusability) were important in 
creating true flexibility. The architecture has two core layers 
(reactive and executive) providing the stable foundation for 
expansion via a Standard Payload Interface. While Huxley was 
designed for flexibility, the use of the SOMA messaging 
protocol in the implementation has helped realize the 
architecture’s potential. Given Huxley’s qualities, it promises 
to be the core software system on current and future platforms 
for years to come.  
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