
1

Huxley: A Flexible Robot Control Architecture for
Autonomous Underwater Vehicles

Dr. Dani Goldberg
Bluefin Robotics Corporation

553 South Street
Quincy, MA 02169 USA

dgoldberg@bluefinrobotics.com

Abstract—This paper presents “Huxley,” a production robot
control architecture that was developed by Bluefin Robotics for
its fleet of autonomous underwater vehicles (AUVs). Huxley was
designed with flexibility foremost in mind, allowing it to be easily
adapted and reliably deployed on a wide range of platforms. The
architecture follows a layered paradigm, providing a clean and
logical abstraction for the major control functions. It also
provides an interface for interaction with the layers, enabling
expansion of the core capabilities of the architecture. This
interface provides users the flexibility to develop smart payloads
capable of utilizing available data, modifying the behavior of the
AUV and even exploring new frontiers of autonomy.

Keywords—control architectures, layered architectures,
robotics, autonomous underwater vehicles, AUVs, unmanned
underwater vehicles, UUVs

I. INTRODUCTION
Control architectures for autonomous mobile robots have

been an active area of research and development for the better
part of three decades. While many of the existing published
architectures were innovative in their time and helped influence
the current state-of-the-art, the vast majority of these
architectures has been focused on academic research and has
never been deployed on commercial production systems.
Furthermore, while arguably applicable to all mobile robotic
platforms, few of these architectures have been demonstrated
on autonomous underwater robots. This paper presents a
control architecture, dubbed “Huxley,” that was specifically
designed for use on commercially-available, production
autonomous underwater vehicles (AUVs). In addition to
describing the motivation and design of Huxley, this paper will
compare and contrast Huxley with other well-known robot
control architectures.

Bluefin Robotics began development of Huxley in 2003 as
a next generation, flexible control system for its fleet of AUVs.
Owing to its nature as a production software system, Huxley
had a number of important constraints placed on it, the most
fundamental of which was the need for flexibility. If Huxley
had not been able to accommodate the current and future
AUVs manufactured by Bluefin, or if the cost of doing so had
been too high, then Huxley would have had a short life indeed.
An interesting consequence of Huxley’s need for flexibility
was that it drove many other characteristics that are generally
associated with good software systems. Flexibility meant that

Huxley had to be robust and reliable on many different
platforms; flexibility meant that it had to be easily extensible to
accommodate new hardware and new system capabilities;
flexibility meant that it had to be maintainable such that
improvements or modifications in one area would not cascade
across the system; and flexibility meant that it had to be
testable to ensure the integrity of Huxley across all deployed
systems. With these goals in mind, Bluefin developed Huxley
over the course of several years. Huxley began shipping in
early 2005 and has since proven itself to be the flexible control
system that was intended.

The Huxley control architecture has two core layers: a
reactive layer and an executive layer (Fig. 1). The reactive

Fig. 1: The Huxley Architecture

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

2

layer performs tight-loop control of the system with little
notion of maintained state. The reactive layer contains
individual controllers that interface with hardware sensors and
actuators to issue commands and receive data/feedback at a
high frequency. Built on top of these controllers, though still in
the reactive layer, is the dynamic control system that monitors
and adjusts the AUV’s position and attitude so as to maneuver
the AUV as desired by the executive layer. The executive layer
is responsible for more protracted, state-based activities,
including navigation, behavior control and a supervisor
function. Navigation fuses all appropriate information over
time to maintain the best estimate of the vehicle’s position and
attitude. Behavior Control decomposes high-level plans into
actions to be accomplished by the reactive layer. A Supervisor
monitors the overall state and health of the system.

One of the most important aspects of the Huxley
architecture is that it provides the flexibility to expand the core
reactive and executive layers via a standard interface (Fig. 1).
This interface is built on the core Huxley infrastructure and
works organically within the architecture. It provides the
opportunity for users to create two things: one, an expanded
executive layer that issues commands to the reactive layer;
and/or two, a higher-level planning/deliberative layer that can
issue commands to the executive or reactive layers.

These aspects of Huxley and its use on AUVs will be
explored in more detail in the following sections. We begin
with a discussion of the design goals for Huxley, followed by a
detailed examination of the Huxley architecture and how it
meets the designed goals. We then delve into a core enabling
technology of the Huxley implementation, the communications
protocol, and show how it fits into a working Huxley system.
Throughout the paper, we will touch on Huxley’s relationship
to other related work in the literature.

II. HUXLEY DESIGN MOTIVATIONS
At the time of its design in 2003, the overarching

requirement for Huxley was that it be applicable to all of
Bluefin’s major AUV platforms and allow for easy
customizations of each delivered system to meet specific
customer needs. The platforms and their applications, described
below, are varied and help illustrate the motivation behind the
Huxley architecture.

Bluefin’s platforms include the Bluefin-9, Bluefin-12S,
Bluefin-12D and Bluefin-21 classes of torpedo-style
autonomous vehicles (Fig. 2), each categorized by the outside
diameter of its hull (i.e., 9, 12 and 21 inches). These AUVs are
generally employed as data collection platforms by customer
with very different needs. Defense customers have utilized the
platforms for applications such as mine-countermeasures
(MCM) and battlespace preparation (BP) activities in shallow
water, though interest is also expanding to areas such as
persistent surveillance and anti-submarine warfare (ASW).
Commercial customers are focused on applications such as
shallow- and deep-water hydrographic surveys and collecting
data for the oil and gas industries, among others. Scientific
customers are interested, for example, in data for
oceanographic research, developing new underwater sensors
and data-collection sub-systems (e.g., new imaging sonars),

Fig. 2: Top to bottom: Bluefin-9, Bluefin-12D, Bluefin-21, and HAUV.

3

and conducting research on single- and multi-vehicle
autonomy. Huxley was also intended to be applied to Bluefin’s
Hovering Autonomous Underwater Vehicle (HAUV) class [1]
that uses thrusters along three axes to provide five degree-of-
freedom control of the vehicle allowing it to hover and
maintain position relative to other objects (Fig. 2). Applications
for the system include ship hull inspection, port and harbor
security, and infrastructure assessment. While outwardly the
control of the HAUV may appear very different from that of
Bluefin’s other AUVs, the goal was for HAUV to share a
common architecture and the vast majority of common code
with the torpedo-style platforms.

The requirement for Huxley to be able to support multiple
platforms 1 (current and future), the varied applications for
those platforms, and individual customizations for each
delivered system translated to the overarching design goal of
flexibility.

Flexibility as a design goal, however, is of limited benefit in
and of itself. In the extreme, total flexibility means total
generality, the absence of any significant supporting
architecture or infrastructure – clearly of limited benefit.
Rather, flexibility is most useful when it guides the
development of an architecture by informing and balancing
other major design goals and decisions.

For Huxley, flexibility of the control architecture helped
balance other requirements, including:

• Reliability – In order to truly be said to support
multiple platforms/customizations, Huxley had to be
able to do so reliably. That meant having common
elements and infrastructure to provide a well-tested and
proven core software system.

• Extensibility – Huxley had to be able to accommodate
new capabilities, platforms, and next-generation
enhancements.

• Maintainability – If Huxley were to become more
difficult to maintain over time as the number of
configurations and customizations increased, Huxley
would not have been truly flexible or met the design
need.

• Testability – Without the ability to test Huxley quickly
and easily across the supported platforms and
configurations, extending and maintaining the system
while keeping it reliable would have been a practical
impossibility.

Other important design considerations for software systems
include usability, efficiency and portability. While these are
important attributes that played a role during the detailed
design and implementation of Huxley, they were not major
players in the high-level architectural design, our focus in this
paper.

 Given the design goals stated above, it is not surprising that
Huxley had to be architected with a proper level of modularity

1 Bluefin also manufactures vehicles which, due to particular hardware,
software, or program requirements, do not use Huxley.

and significant reusability – a design philosophy even more
important because it was shared with Bluefin AUV hardware
architecture and overall system configuration. Luckily, there
was no need to completely reinvent the wheel in this regard. At
that time, in 2003, mobile robot control architectures had been
an active area of research for several decades with major
principles fairly well established, if not universally accepted
(see [10] and [11] for relevant discussions). Two such
principles for autonomous, physically embodied mobile robots
(or “situated agents,” if you prefer) may be expressed as
follows:

• Maintain appropriate interaction with the world.

• Perform activities at the appropriate timescales.

The state of the real world (i.e., the robot’s environment) is
to a certain extent unknown, uncertain, unconstrained and
unobservable. Regardless of the control algorithms and
decision making algorithm that a robot employs, it must make
observations of the world around it and take actions within that
world, and it must do so at a frequency that is appropriate to the
dynamics of its environment. An autonomous robotic car
driving down a busy freeway, for example, must both observe
lane markings, signs, and other cars, and act to get to its goal
safely; failure to observe or act would be disastrous. No less for
an AUV skimming the ocean floor thousands of meters below
the surface, or operating within a busy harbor environment – it
must interact with its environment to accomplish it goals
safely.

The activities that a robot must undertake in interacting
with the world and accomplishing its objectives take place on
different timescales. On a very short timescale, the robot must
send commands to its actuators and sensors and receive back
status/data in order move and interact with the physical world.
This level of control is sometimes referred to as “reactive”
owing to its short timescale, tight coupling with the physical
world, and little-to-no maintained state.

On a longer timescale, the concern is achieving the goals
set forth for the vehicle (e.g., driving to a destination, or
surveying a region of the ocean floor) while maintaining the
system within certain constraints of safety, execution time,
battery capacity, etc. These goals may be expressed
programmatically, though they are most useful and flexible
when expressed in a high-level plan representation. In the latter
case, the controller must decompose the plan representation
into lower-level tasks and ultimately actions to be taken by the
reactive layer. Due to its role in the execution of plans and
accomplishment of system goals, this layer is often referred to
as the “executive.” It is often viewed as the mediator between
plan generation (whether done by human or otherwise) and the
lower-lever reactive layer.

On a timescale greater than that of the executive layer is the
element of the robot typically concerned with establishing the
goals for the system. These goals typically involve some sort of
planning such as path planning, resource management,
constraint management, task prioritization, high-level fault
detection and recovery, scheduling of activities, or high-level
coordination with other elements of the system. Not

4

surprisingly, this layer of control is often referred to as the
“planning” or “deliberative” layer.

The notions of layering the robot control architecture
according to timescales of activity and maintaining an
appropriate level of interaction with the environment helped
guide the structure of the Huxley architecture. They also helped
balance the flexibility of the system with the need for
reliability, extensibility, maintainability and testability. In the
following section we explore how the design goals and notion
of layered control were applied to the Huxley architecture.

III. HUXLEY’S LAYERED ARCHITECTURE
The power of Huxley, or any good software architecture, is

how it helps constrain the solution space from everything
possible to a subset appropriate to the problem domain. For
Huxley, this meant focusing on the problem of controlling real
world AUVs for an ever-expanding customer base with new
requirements and customizations while also allowing for future
enhancements. While daunting at first, as we shall see in the
following paragraphs, the major elements of Huxley fell out of
the basic requirements for the system.

A. The Reactive Layer
At the most basic level, Huxley has to be able to control

AUV hardware devices – sensors and actuators – that directly
interact with the physical world. The issuing of commands and
receipt of data needs to be at a high frequency with low latency
to make the vehicle accurate and responsive in its actions while
also providing high resolution data to customers. These needs
argued for a reactive layer of control (Fig. 1). While useful
conceptually, a monolithic reactive control layer would have
been of limited benefit when it came to flexibility, extensibility
and reusability. Within the reactive layer, therefore, Huxley
requires a control module (or “driver”) for each hardware
component. As an example, see Fig. 3 in which the reactive
layer of a hypothetical vehicle contains three individual drivers,
one each for a GPS unit, a sonar, and a thruster. Note that, in an
actual AUV, Fig. 3 would be expanded with drivers controlling
navigation sensors (e.g., inertial measurement unit or inertial
navigation system, Doppler velocity log, pressure sensor),
actuators (e.g., propulsors, thrusters), communications
subsystems (e.g., acoustic modems, satellite communications)
and data collection sensors (e.g., sidescan sonar, synthetic
aperture sonar, multibeam sonar, sub-bottom profiler, forward
look sonar, water quality sensors).

In addition to drivers, the reactive layer includes a Dynamic
Control component [2] that contains the low-level control
loops for stable vehicle flight. On Bluefin’s torpedo-style
vehicles, for example, Dynamic Control is responsible for
stable depth and altitude maintenance, as well as a variety of
horizontal control modes such as heading, trackline, trackcircle
and waypoint following. The Dynamic Control module,
however, can implement whatever low-level control scheme is
appropriate to the class of AUV. Dynamic Control of the
HAUV platform, for example, is unique (owing to its multiple
degrees of freedom and its use of an object-relative coordinate
frame) and, yet, its Dynamic Control module fits naturally
within Huxley.

Huxley’s reactive layer also serves as the boundary where
specialized communications protocols and mechanisms are
translated to a common, shared protocol. This is illustrated in
Fig. 3 where the communication pathway between drivers and
their corresponding devices is labeled as “Specialized
Communications” (solid arrows) while communication
between Dynamic Control and the Thruster Driver is labeled as
“Huxley Communications” (represented as a white arrow).
Some hardware devices may share a communications protocol
(e.g., most GPS units use NMEA [3] messages), but many use
protocols unique to the device or vendor. Part of the
responsibility of a Huxley driver is translating these hardware-
specific interfaces to a common communications protocol
(described later in this paper). The notion of keeping non-
standard interfaces at the edges of the Huxley architecture
(here, the boundary between devices and drivers) is a key to
Huxley’s flexibility. Substituting, adding or removing a
hardware device is relatively straightforward as major changes
are localized to the driver. Localizing changes also promotes
extensibility, maintainability and reliability of the software
system since changes do not propagate or destabilize the entire
system.

B. The Executive Layer
Another core capability of Huxley is mission execution. A

Huxley-based AUV had to be able take a high-level mission
plan, decompose it into executable elements that it then
provides to the reactive layer along with data for proper
control of the vehicle’s hardware. This capability is the
purview of Huxley’s executive layer of control (Fig. 1). Similar
to the reactive layer, though, it is not sufficient simply to state
that there is such a layer; the components and organization of
the executive layer must promote the desired qualities of the
system.

Huxley’s executive layer is composed of three major
elements: Behavior Control, Navigation, and a Supervisor.
Behavior control is responsible for decomposing high-level
plan representations into control commands that are passed to
the reactive layer for execution on the hardware. The plan
representation may be generated several different ways:

Fig. 3: Huxley's Reactive Layer interacting with hardware.

5

1. By a human using an application. For example,
Bluefin has a chart-based, graphical Mission Planner
application that serves this purpose. As an alternative,
Mission Planner also supports open external interfaces
for planning via other tools.2

2. Via an automated mechanism. Examples of this are
the deliberative/planner layer of the architecture
creating the plan, or an automated external application
doing so via an available interface.

Regardless of where and how the plan is generated, it is the
responsibility of Behavior Control to decompose the plan into
control commands that it sends to Dynamic Control (Fig. 4).
Note that these commands utilize the common Huxley
communications protocol (white arrows). Behavior control is
also able to send Huxley commands to device drivers in the
reactive layer to control various parameters (such as device
operating settings and data logging) that are represented in the
mission plan. In order to send the right commands at the right
time, Behavior Control must monitor the AUV’s progress
based on time, position, or other factors.

Navigation is responsible for fusing and filtering all
available navigation sensor inputs into the best estimate of the
vehicle’s position, attitude and rates, providing these data to
other components of the system. One component is Behavior
Control, which uses the data to help monitor mission plan
execution. The other is Dynamic Control, which utilizes the
data as feedback to adjust control parameters to ensure that the
AUV is following the control rules and maintaining proper
stability. Note that, to preserve the clarity of Fig. 4, the inputs
to Navigation are not drawn. In a fully elaborated diagram,
one would see Huxley communications from the GPS Driver
to Navigation. Navigation would also be seen consuming data
from other sensors (e.g., Doppler velocity log, pressure/depth
sensor, inertial unit, etc.) in order to produce its estimate of
state.

The final element of the executive layer is the Supervisor,
a component responsible for vehicle lifecycle management
and health and status monitoring. In other words, it supervises
the overall state of the vehicle. As shown in Fig. 4, the
Supervisor communicates with all of the other modules in the
system, both in the executive and reactive layers, using
Huxley’s communication protocol (white arrows). The
Supervisor monitors the components to ensure that they are
functioning properly and reports overall health and status of
the system. While the Supervisor is not directly responsible for
running missions (that is Behavior Control’s job), it is
responsible for coordinating mission start and stop by making
certain that system and all sub-components are in the proper
state.

The elements of Huxley’s executive layer (Behavior
Control, Navigation, and Supervisor) constrain the system in a
useful manner while still allowing flexibility. Consider
Navigation, as an example. The Huxley architecture says that
there must be a component responsible for maintaining an

2 Two such interfaces are: The Common Operator Interface Navy
(COIN), and the Mine Warfare and Environmental Decision Aids Library
(MEDAL).

estimate of the vehicle’s position/attitude and providing those
data to other components. The architecture, however, does not
require any specific implementation of Navigation. One could
develop a navigation module based on the use of an inertial
navigation system (INS), an inertial measurement unit (IMU)
and compass, use of long baseline (LBL) beacons, or other
schemes. At Bluefin, for example, we have developed multiple
navigation modules for our torpedo-style vehicles, including
both INS-based [4] and IMU/compass-based versions
providing global vehicle position. Depending on the
customer’s requirements, we can simply “drop-in” the
appropriate module for the vehicle. As a further example,
there is Bluefin’s HAUV, which navigates relative to other
objects, not in a global frame like the torpedo vehicles. The
HAUV Navigation module fits just as cleanly in the Huxley
architecture as any of the other navigation modules.

Huxley’s executive layer of the Huxley architecture
provides three core elements for an AUV: Navigation; mission
plan decomposition and execution (Behavior Control); and
system health and status management (Supervisor). The
architecture allows extending capabilities by dropping-in
appropriate implementations for each of these elements. It also
facilitates reliability and maintainability through the reuse of
common components within a stable framework.

C. The Standard Payload Interface: Another Level of
Flexibility
The reactive and executive layers form the stable core of

the Huxley architecture. There is plenty of flexibility in
choosing hardware and matching it to Huxley drivers and
other components to meet customers’ requirements. A Huxley
vehicle with a complete reactive and executive layer is a fully

Fig. 4: Huxley’s Executive Layer communicating with an example
Reactive Layer.

6

operational AUV able to take mission plans and execute them
successfully, thereby providing the customer with the desired
data. Bluefin has implemented a large set of Huxley
components and a rich plan representation language capable of
expressing a myriad of different missions that are executed by
Behavior Control.

As flexible as the core Huxley capabilities are, they are not
sufficient for some of our customers – in particular those who
are developing their own payload hardware or are interested in
developing new behavioral modes or higher-level deliberative
control functions. For these customers, Huxley departs from
the typical notion of a layered control architecture to provide
an external interface to the executive and reactive layers. This
Standard Payload Interface (Fig. 5) utilizes the Huxley
communications protocol (white arrows) with components in
the reactive and executive layers. It also provides an external
interface for communications with the payload, ideally
utilizing a messaging format that is easy for customers to use.
Bluefin’s implementation of the Standard Payload Interface,
for example, utilizes NMEA style messages. The Standard
Payload Interface is an optional component that can be
dropped-in for systems that require such capability, without
necessitating changes to other components. As such, it is in-
line with the Huxley goals of extensibility, maintainability and
reliability.

The Standard Payload Interface provides communications
with both the reactive and executive layers. At the reactive
layer, the Standard Payload Interface receives data directly
from Huxley drivers and provides those data across the
payload communications channel; it does not send commands
directly to Dynamic Control or the drivers. This asymmetry
between data and commands is intentional and is motivated by
the need to maintain safe, reliable core AUV control. If a
payload were able to send commands directly to Huxley
drivers, it could compromise the control and monitoring

functions of the executive layer, leading to unpredictable
behavior, reduced reliability and safety hazards.

At the executive layer, the Standard Payload Interface
translates control requests from the payload into Huxley
messages to the executive layer components. These are
“requests” rather than “commands” because the executive
layer reserves the right not to honor them. If the payload, for
example, were to ask the AUV to collide with the ocean floor,
the executive layer would typically be within its rights not to
do so. In general, however, the executive layer will attempt to
fill requests faithfully, whenever possible. This give-and-take
relationship between the payload and the Huxley executive
layer is extremely powerful. It gives the customer the
freedom/flexibility to experiment and develop “smart”
payloads capable of receiving data and issuing complex
commands, while keeping the core software systems and
vehicle reliable and safe. Standard Payload Interface requests
from the payload can include: stopping the mission, sending
communications, changing the vehicle’s current actions,
inserting new mission elements, etc. To aid the payload, data
are also available from the executive layer including overall
vehicle health and status from Supervisor, mission execution
status from Behavior Control, and vehicle position/attitude
from Navigation. These data can be logged by the payload as
part of its data collection requirements, or used as an aid in
formulating requests via the Standard Payload Interface.

In the next section, we will examine some of the possible
system enhancements enabled by the Standard Payload
Interface.

Fig. 5: Huxley’s Standard Payload Interface for interaction with the
executive and reactive layers of the architecture.

Fig. 6: Huxley’s Flexible Payload Layer communicating with other layers

via the Standard Payload Interface.

7

D. The Flexible Payload Layer
The Standard Payload Interface allows the addition of an

optional third layer to the architecture that can serve various
functions depending on the requirements for the system and the
needs of the customer. This optional layer is completely at the
control and discretion of the customer, constrained only by the
data and commands available across the Standard Payload
Interface.

For customers developing their own sensor packages, the
Flexible Layer may take the form of a “smart” payload. The
customer can develop their own software to interface with their
developmental sensor package and communicate with the core
Huxley system via the Standard Payload Interface. In such a
system, the payload package may need data from core systems
(e.g., navigation data for localization, sound speed corrections,
etc.) and commands to synchronize the payload’s behavior with
the core Huxley system. Bluefin’s current implementation of
the Standard Payload Interface provides a variety of data
streams, and allows arbitrary user-defined payload commands
to be embedded into mission plan representations and sent to
the payload at desired points in the mission.

For some applications, it may also be necessary for the
smart payload to send command requests to the Executive
Layer across the Standard Payload Interface. These commands
could constitute small modifications to the executing plan
localized in time. For example, upon seeing an object of
interest on the ocean floor, the payload could request an in-
stride excursion to approach or get a different angle on the
target. A payload performing localized modifications of the
executing mission could be considered to constitute an
“expanded” Executive Layer. Similar to the core Huxley
Executive Layer, the payload relies on the high-level plan
representation to define the overall mission, but enhances the
capabilities of the Executive with appropriate modifications
and in-stride excursions.

Continuing along the spectrum of smart payloads, one
eventually finds payloads capable of significantly modifying
the mission plan, or alternatively, defining their own mission
plans. These payloads effectively constitute a traditional
Planning or Deliberative Layer for the architecture. They rely
on the Huxley Executive and Reactive Layers for data and safe
execution of requested actions, but are capable of generating
(and possibly reasoning about) their own high-level plans.
These are the payloads of customers interested, for example, in
exploring the boundaries of planning, autonomy, and multi-
vehicle coordination.

As we have seen in this section, the Huxley architecture
promotes a reliable and maintainable core system that is also
extensible, able to easily accommodate different hardware
devices and software capabilities (e.g., navigation solutions)
with clean localized changes. On top of this, Huxley provides
the flexibility of a Standard Payload Interface that can be used
to safely enhance the capabilities of the system with smart
payloads that expand the Executive Layer or even constitute a
full Planning Layer.

A good software architecture, like Huxley, is important in
achieving the desired qualities of a system – but so is the
implementation. In the next section, we will examine a few of
Huxley’s implementation details that help Huxley realize its
potential as a robot control architecture.

IV. STREAM-ORIENTED MESSAGING ARCHITECTURE: A
HUXLEY ENABLING TECHNOLOGY

Bluefin’s implementation of the Huxley architecture rests
on a foundation of key infrastructure elements. One of the most
vital of these is the Huxley messaging protocol, called the
Stream-Oriented Messaging Architecture (SOMA) (and
represented as white arrows in Fig. 3 through Fig. 6). SOMA is
the communications “glue” that creates a unified system out of
the elements of the Reactive Layer, Executive Layer, and the
Standard Payload Interface. It is also vital to how Huxley
achieves a high level of flexibility, extensibility, reliability and
maintainability.

SOMA is a publish-subscribe messaging protocol with a
central dispatcher (called the SomaManager) that establishes
peer-to-peer connections between applications (or processes).
In the Huxley implementation, each component of the core
system (i.e., device drivers, Dynamic Control, Behavior
Control, Navigation, Supervisor, and Standard Payload
Interface) is an independent application that uses SOMA for
communications. Each Huxley application running on a
computer connects with a SomaManager running on the same
machine to indicate what messages it is publishing and to what
messages it wishes to subscribe. The SomaManager is
responsible for connecting applications publishing specific
messages to other applications that wish to subscribe to those
messages.

Consider the example of the three Huxley applications
shown in Fig. 7. The Navigation application (App1) informs
SomaManager that it would like to receive (or subscribe to)
GPS data. The CTD Driver (App2) informs SomaManager that
it provides (or publishes) conductivity-temperature-depth
(CTD) data, while the GPS Driver (App3) publishes GPS data.
Seeing the match between subscriber and publisher, the
SomaManager facilitates the creation of a peer-to-peer
connection so that App1 (Navigation) gets its GPS data directly
from App3 (GPS Driver).

Due to the publish/subscribe nature of SOMA, there is no
enforced synchronization mechanism between subscribers and
publishers. Publishers provide data at frequencies that are
appropriate to the type of data they produce and subscribers
consume the data at that frequency for their processing. A GPS
device, for example, outputting data at 1 Hz would usually
translate to the Huxley GPS Driver publishing data at 1 Hz. An
IMU or INS, on the other hand, which outputs data at 10’s of
Hz may have a Huxley driver that publishes at that frequency
or downsamples, if appropriate.

8

A. Types of SOMA Messages
SOMA messages come in several varieties distinguished by

their reliability and persistence. These distinctions are
important to the proper function of a system and are described
in more detail below.

1) Reliability of Messages
SOMA messages may either be reliable or unreliable,

referring to the guarantee of receipt. Given an executing
application publishing a reliable message, SOMA attempts to
guarantee that any executing subscriber will eventually receive
the message, if there exists sufficient bandwidth to send data.
Unreliable SOMA messages do not have any guarantee of
receipt. A subscriber will only receive an unreliable message if
there is sufficient bandwidth to support its transmission. If not,
the message will be dropped.

Within each Huxley process, reliable SOMA messages
have priority over unreliable messages. Pending reliable
message publications will always be serviced before unreliable
messages. Given limited bandwidth, this helps ensure that
reliable messages (assumed to be of greater importance) reach
their destination.

2) Persistence of Messages
Independent of reliability, SOMA messages may be either

persistent or non-persistent. Persistent messages have values
that endure beyond the immediate publication of the message.
Consider the case of an application that has published a
persistent message only once. Subsequent to this publication, a
different application subscribes to this publication. Bandwidth
permitting, the subscribing application will receive the value
that was last published as it has persisted beyond the immediate
publication event. In the case of non-persistent messages,
applications that subscribe to such messages after the last

publication will not receive the data that were most recently
sent.

SOMA message persistence provides a mechanism by
which pertinent data can be transferred between applications
without the need to synchronize start times or require that
applications re-send the same (old) data every time a new
application subscribes to a particular message. Such a
mechanism would not only result in unnecessary message
traffic but would also not be desirable for all types of data.

3) Combinations of Reliability and Persistence
The four combinations of reliability and persistence exist as

distinct types of SOMA messages.

• Measurement – Refers to unreliable, non-persistent
SOMA messages. Measurements are intended for data
that require frequent transmission and for which only
the current value is of importance. Examples of such
data include sensor readings such as the latitude and
longitude provided by a GPS unit. It is arguably poor
practice to make GPS data reliable as they are
frequently updating and if one is dropped, the next may
be received. In addition, old GPS positions may have
little relevance to actual position, so persistence is not
important.

• Command – Refers to reliable, non-persistent SOMA
messages. Commands are intended for data that are
sent infrequently and require a guarantee of receipt, but
have no value unless they are received in a timely
fashion. An example would be a message telling
Behavior Control to start a specific mission. If the
system is functioning properly, then Behavior Control
should reliably start the mission. If not, one would not
want Behavior Control “spontaneously” starting a
mission at a later time when the system may be
functioning properly.

• Status – Refers to reliable, persistent SOMA messages.
Status messages are most applicable to data that are
seldom published but whose values remain relevant
long after publication. Such messages are often status-
related. Whenever a Huxley application, for example,
changes its overall state (initializing, running, failed) it
publishes it as a Status message. This is a key value
that other applications need to see reliably, and whose
value is relevant for long periods of time.

• StreamCommand – Refers to unreliable, persistent
SOMA messages. StreamCommands are used for
rapidly published commands where the correct
response to a dropped message is not to retry, but to
wait for the next command. For example, the rapid
changes to a thruster’s RPM would fall into this
category.

4) SOMA Interfaces (IFs)
As part of Huxley’s SOMA implementation, there exists the

notion of a SOMA Interface (IF). IFs bundle together messages
of a particular type to create a grouping that is common to
components within the architecture. While applications within
the Huxley framework can certainly use individual SOMA

Fig. 7: Example of SomaManager establishing a publish-subscribe
connection between applications.

9

messages for communication, it is really the IFs that help
facilitate the level of flexibility, modularity and reuse that is
promised by the Huxley architecture.

Consider the example of a Huxley driver for a conductivity-
temperature (CT) sensor. The driver must communicate with
the hardware to get conductivity and temperature values that it
publishes as Measurements. Grouping these two measurements
into an IF (call it CondTempIF) that represents data published
by a CT sensor driver, allows drivers for different CT sensors
to use the same IF. Bluefin has integrated multiple CT sensors
on its AUVs. Even though each device has a different driver,
the drivers all publish data using the same CondTempIF. This
means that subscribers to CondTempIF can be agnostic as to
the hardware and Huxley driver providing the data. It also
means that the integration of a new CT sensor does not
propagate changes beyond the driver itself.

Another example, described earlier in the paper, is that of
Navigation. Bluefin has developed several different navigation
solutions for its torpedo-style vehicles, each of which is
designed for different sensor suites and/or customer needs.
Each version of Navigation, however, utilizes the same
Measurement IF for publishing the navigation solution (i.e., the
vehicle’s current latitude, longitude, depth, roll, pitch, yaw,
velocities, accelerations, etc.). This means that no matter which
version of navigation is employed in a system, other
components (such as Behavior Control and Dynamic Control)
can remain agnostic and unaffected.

As we have seen, SOMA and the use of IFs are key
technologies in the implementation of Bluefin’s Huxley
architecture. As a publish-subscribe protocol, SOMA not only
provides the messaging between core layers and components of
the Huxley architecture, it does so in a way that promotes the
desired flexible qualities of the system. Huxley can be extended
with new functionality and configurations to meet customers’
needs while localizing changes and allowing significant reuse
of components. Localizing changes and reusing components
facilitates maintenance of the software and promotes reliability
of the delivered systems.

V. RELATED WORK
Mobile robotic systems that interact with the world (AUVs

being one type) have been an area of research interest for
decades. Reference [4] provides a review of research touching
on Artificial Intelligence and Robotics and explores
foundational notions of situatedness, embodiment, intelligence
and emergence. Within the wider field of Robotics, many
investigators have explored the use of layered architectures
including [5], [6], and [7]. Huxley, being a layered architecture,
shares similarities with these. Reference [15] describes
CLARAty, a two-layered architecture developed by NASA and
its partners with the goal of establishing a system that is
reusable across multiple platforms. This goal is shared with
Huxley. The architectures, however, differ in that Huxley has
two core layers and an interface for expanding the system with
a third layer. Another well-known and popular approach to
robot control is Behavior-Based Robotics [13], [14], which is
founded, in part, on earlier work on a layered architecture
called the Subsumption Architecture [12]. While Huxley

overall is not a behavior-based architecture, the Behavior
Control element in Huxley’s executive layer is very much in
the style of a behavior-based controller.

Reference [8] expands on earlier work by creating a three-
layered architecture that allows coordination with other robots
at each layer of the architecture. The Huxley architecture, in
contrast, requires the use of the Standard Payload Interface for
interacting with the layers of the architecture. This is meant to
keep the core Huxley systems stable and reliable while
providing flexibility to expand the system. Another difference
is that Huxley does not define an explicit planning layer but
allows one to be defined as needed through the use of the
Standard Payload Interface. Reference [9] further expands on
[8] with a market-based planning layer. The market-based
coordination mechanism described is one possible planning
layer that could be added to Huxley via the Standard Payload
Interface. Many others are possible.

The Standard Payload Interface has been used on multiple
Bluefin systems. References [16] and [17] are examples where
the interface has been used directly for integration of smart
payloads. Reference [18] describe work in which the MOOS-
IvP software system [19] is used to provide a planning layer of
control via the Standard Payload Interface.

VI. CONCLUSION
This paper has described the Huxley robot control

architecture, developed by Bluefin Robotics as a production
software system for its fleet of AUVs. Huxley was designed
with flexibility foremost in mind, but with the understanding
that other qualities (e.g., reliability, extensibility,
maintainability, modularity, and reusability) were important in
creating true flexibility. The architecture has two core layers
(reactive and executive) providing the stable foundation for
expansion via a Standard Payload Interface. While Huxley was
designed for flexibility, the use of the SOMA messaging
protocol in the implementation has helped realize the
architecture’s potential. Given Huxley’s qualities, it promises
to be the core software system on current and future platforms
for years to come.

ACKNOWLEDGMENT
The author would like to thank Deanna Talbot, Louis

Quartararo, Robert Panish and Jeff Smith for valuable feedback
on earlier drafts of this paper. The Huxley architecture and
implementation are the joint work of many folks at Bluefin
Robotics.

REFERENCES
[1] J. Vaganay, L. Gurfinkel, M. Elkins, D. Jankins, and K. Shurn,

“Hovering autonomous underwater vehicle – System design
improvement and performance evaluation results,” in Proc. 16th Int.
Symp. Unmanned Untethered Submersible Technology, Durham, NH,
2009.

[2] R. Panish, “Dynamic Control Capabilities and Developments of the
Bluefin Robotics AUV Fleet,” in Proc. 16th Int. Symp. Unmanned
Untethered Submersible Technology, Durham, NH, 2009.

[3] NMEA 0183 Interface Standard, NMEA Standard 0183, 2002.
[4] R. A. Brooks, “Intelligence Without Reason,” in Proc. 12th Int. Joint

Conf. Artificial Intell., 1992, pp. 569-590.

10

[5] R. Bonasso, D. Kortenkamp, D. Miller, and M. Slack, “Experiences with
an architecture for intelligent, reactive agents,” J. Artificial Intell.
Research, vol. 9, no. 1, 1997.

[6] N. Muscetolla, P. P. Nayak, B. Pell, and B. Williams, “Remote agent: To
boldly go where no AI system has gone before,” Artificial Intell., vol.
103, no. 1-2, pp. 5-48, 1998.

[7] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O’Sullivan, “A
layered architecture for office delivery robots,” in Proc. 1st Int. Conf.
Autonomous Agents, 1997.

[8] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershberger, A.
Stentz, and R. M. Zlot, “A layered architecture for coordination of
mobile robots," in Proc. 2002 NRL Workshop on Multi-Robot Syst.,
May, 2002.

[9] M. B. Dias, D. Goldberg, and A. Stentz, "Market-based multirobot
coordination for complex space applications," in Proc. 7th Int. Symp. on
Artificial Intell., Robotics and Automation in Space, May, 2003.

[10] R. Brooks, “Challenges for complete creature architectures,” In Proc. 1st
Int. Conf. on Simulation of Adaptive Behavior, Paris, France, 1991.

[11] R. Simmons, "Structured Control for Autonomous Robots," IEEE Trans.
Robot. Autom., .vol. 10, no. 1, Feb. 1994.

[12] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, Mar. 1986.

[13] M. J Matarić, “Behavior-based robotics as a tool for synthesis of
artificial behavior and analysis of natural behavior,”
 Trends in Cognitive Science, vol. 2, no. 3, pp. 82-87, Mar. 1998.

[14] M. J Matarić and F. Michaud, “Behavior-Based Systems,” in Springer
Hanbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Germany:
Springer-Verlag, 2008, ch. 38, pp. 891-909.

[15] I. A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T.
Estlin, R. Madison, J. Guineau, M. McHenry, I. Shu, and D. Apfelbaum,
“CLARAty: Challenges and steps toward reusable robotic software,” Int.
J. Advanced Robotic Systems, vol. 3, no. 1, pp. 23-30, 2006.

[16] J. Kloske, “AUV-12 Sonar Integration and Evaluation,” SRI
International, Menlo Park, CA, Rep. ESD-18858-AR-10-075, Feb. 2010.
[Also: DTIC ADA515048; http://handle.dtic.mil/100.2/ADA515048]

[17] A. A. Proctor, J. Kennedy, E. Gamroth, C. Bradley, and D. Gamroth,
“The ocean technology test bed - From concept to operation,” in Proc.
IEEE OCEANS 2010, Sept. 2010, pp.1-7.

[18] M. R. Benjamin, H. Schmidt, P. Newman and J. J. Leonard, “Nested
autonomy for unmanned marine vehicles with MOOS-IvP,” J. Field
Robotics, vol. 27, no. 6, pp. 834–875, 2010.

[19] M. R. Benjamin, P. M. Newman, H. Schmidt, and J. J. Leonard, “An
Overview of MOOS-IvP and Users Guide to the IvP Helm Autonomy
Software”, CSAIL Technical Report, MIT, Rep. MIT-CSAIL-TR-2010-
041, Aug. 2010.

ABOUT BLUEFIN ROBOTICS
Bluefin Robotics manufactures and develops Autonomous

Underwater Vehicle (AUV) systems and technology. Founded
in 1997, the company has grown to become a world leader in
AUV products designed for defense, commercial, and scientific
applications. Bluefin Robotics is a wholly-owned subsidiary of
Battelle Memorial Institute. For more information, please visit
www.bluefinrobotics.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

