GENERAL DYNAMICS

Mission Systems

SignalEye[™]

Automatic Spectrum Situational Awareness through Machine Learning

Machine Learning – signal classification using convolutional neural networks (CNN)

Data Driven – detection capabilities based on neural network training

Streaming – signal detection in streaming digital RF data

Software Only – solution runs on general purpose computer

Hardware Independent – RF front-end agnostic

Mission Independent – integrates with existing user-focused mission interfaces

Standards Based — supports VITA-49, VITA Radio Transport

Overview

General Dynamics' SignalEye™ solution provides spectrum situational awareness by automating the classification of signals through the use of machine learning. It provides tactical warfighters and security personnel with a timely, accurate view of the threat in the RF spectrum. It provides the strategic analyst the means to detect trends in the adversary's behavior.

SignalEye™ is a software solution that doesn't require specialized hardware acceleration. In a tactical context it deploys on a commodity hardware as an add-on to a RF front end system solution such as iRF's LiteRail™ or your existing receiver. In a classified or unclassified Amazon cloud context it scales to process petabytes of data.

SignalEye's automated situational awareness identifies dangers before it's too late, with the Curtiss-Wright CHAMP-XD1 rugged digital signal processor (DSP) offering exceptional processing capability to respond to and protect from threats.

6 I can finally process my enormous signal backlog and get some RF context for my missions.

Features at a Glance

- Signal detection, isolation and classification
- Signal classification using Machine Learning
- Confidence Scores for signal classification results
- Stream-based and file-based processing
- VITA-49 format support
- Public, open API (C/C++, Python, Java, Scala) to display data on your mission focused GUI
- Built on open-standards for machine learning (TensorFlow) and orchestrating Docker containers (Kubernetes)

Metadata

- Modulation Type
- Center Frequency
- Bandwidth
- Signal-to-Noise Ratio (SNR) in dB
- Capture Start and Stop Time
- Capture Duration in Milliseconds
- Capture Time Offset in Milliseconds
- Neural Network Confidence

Modulation Types

Analog Methods

- Amplitude Modulation (AM)
 - Single-Sideband Suppressed-Carrier (SSB-SC-AM)
 - Double-Sideband Suppressed-Carrier (DSB-SC-AM)
- Frequency Modulation (FM)

Digital Methods

- Amplitude and Phase-Shift Keying (APSK)
 - APSK-16
 - APSK-32
- Amplitude-Shift Keying (ASK)
 - ASK-2
 - ASK-4
 - ASK-8
- Continuous Phase Modulation (CPM)
 - Continuous-Phase Frequency-Shift Keying (CPFSK)
 - CPFSK-2
 - CPFSK-4
 - CPFSK-8
 - Gaussian Minimum Shift Keying (GMSK)
- Frequency-Shift Keying (FSK)
 - FSK-2
 - FSK-4
 - FSK-8
- Orthogonal Frequency-Division Multiplexing (OFDM)
- Phase-Shift Keying (PSK)
 - 8PSK
 - Binary Phase-Shift Keying (BPSK)
 - Quadrature Phase-Shift Keying (QPSK)
 - General QPSK
 - π/4-QPSK
- Quadrature Amplitude Modulation (QAM)
 - QAM-8
 - QAM-16
 - QAM-128*
 - QAM-256*

* U.S. only

GENERAL DYNAMICS

Mission Systems

