
HIGH PERFORMANCE
DATA ANALYTICS:
Experiences Porting the Apache Hama Graph
Analytics Framework to an HPC InfiniBand
Connected Cluster

www.gdmissionsystems.com/hpc

1. Summary
Open source analytic frameworks, such as those in the Apache eco-system,

provide access to large amounts of data in a productive and fault resilient

way on scale-out commodity hardware systems. The objectives of High

Performance Data Analytic (HPDA) systems are to maintain the productivity

of the frameworks as well as to improve the performance for the Data

Analyst. However, in order to achieve the performance available from High

Performance Computing (HPC) technology, a framework must be recast from

the distributed programming model used ubiquitously in the open source

world to the parallel programming model used successfully in the HPC world.

This “framework as an application” view includes the surgical replacement of

key functions in the framework to leverage the strengths of HPC systems.

We demonstrate this concept by porting the Apache Hama graph analytic

framework to an HPC InfiniBand Cluster. By replacing the distributed

barrier and message passing classes in the framework with HPC variants

(prototyped in MPI), we achieved a performance increase of over 10x on a

real-world Community Detection application applied to an 8 million vertice

graph derived from Twitter data.

2. Motivation: High Performance Data Analytics

The development of open source analytic frameworks

has provided a productive interface to tap the information

content of vast amounts of data. These frameworks

abstract the manipulation of the raw unstructured data

by providing a simple to understand processing and

communication method to the user, enabling a quick

application of a “query” on the data set. Additionally, the

design of the frameworks provide fault resiliency to the

execution, enabling the use of commodity computing

systems while scaling to very large data sets. All

combined, these frameworks have made Big Data

Analytics ubiquitous.

There is great value in the ability to access large data sets,

but there is additional value in the ability to do so with

extreme speed. Consider the impact to the Data Analyst if

the response time of the big data query were in seconds

or minutes, instead of hours or days. The effect would be

to keep the Analyst engaged in the problem, prompting

more and varied queries. The increase in performance

also greatly enhances the ability of the Analyst to test new

methods, leading to new insights into the data sets.

Consider then the value of near-real time or real-time

analytic computations on live data. This performance level

would enable a new concept of operations in Activity-

Based Intelligence (ABI) and similar missions. For example,

real-time data analytics could influence the collection of

the very data being analyzed. In an alternate application,

real-time data analysis could be used to influence the

behavior of that which is the subject of data collection in

the first place.

The combination of the productivity and the achievement

of near-real-time or real-time performance defines High

Performance Data Analytics (HPDA). The following

sections address a solution to achieving HPDA. The first

section describes an approach based on porting the open

source analytic frameworks to HPC systems. This porting

process, however, must re-define the fundamental design

pattern of the open source frameworks in order to take

advantage of the HPC performance capabilities. The next

two sections provide the results of applying this process to

the Apache Hama graph analytic open source framework,

when ported to an HPC InfiniBand connected Cluster. First,

the performance of the modified Hama is evaluated using a

synthetic communication benchmark called CBench. Next,

the framework as a whole is evaluated by executing a real-

world Community Detection application against an 8 million

vertice graph derived from Twitter data. By employing the

proper porting techniques, a performance increase of

greater than 10x is achieved. HPDA is not a stand-alone

capability, but one that is integrated with other systems to

fully impact missions. The final section below discusses a

third goal of HPDA which is integration into the enterprise.

3. The Approach: Open Source Frameworks + HPC

The proliferation of the open source frameworks for big

data analytics motivates their use as a baseline for HPDA.

These are the frameworks that analysts are using as they

experiment with new techniques on ever growing data

sets. Users then leverage the natural growth in functional

capability being constantly developed by the open source

community. A natural path for HPDA is to improve the

performance of the frameworks by hosting them on higher

performing hardware, such as HPC systems.

Simply re-hosting an application on an HPC system

doesn’t guarantee improved performance. In fact,

there is a fundamental difference between the design

pattern used by many open source frameworks

and the design pattern used by HPC applications,

which precludes such performance gains. From the

beginning, the philosophy used to guide the design

of open source big data frameworks has been to

use a distributed programming model. This model

provides system fault resilience in software to enable

the framework to scale to very large data sets on

less reliable commodity hardware. This is the correct

approach on commodity hardware.

In contrast, capability class HPC systems are designed

for fault tolerance at the system level, and do not

require the additional software layers found in the

distributed model. A more appropriate programming

model for HPC systems is the parallel programming

model, which focuses on only the functions required

by the application. In order to achieve the performance

of the HPC system, the framework should be viewed

as an application, and ported to the HPC system.

The software layers added in the framework for fault

resiliency are removed, providing higher performance.

This approach maintains the user-facing application

programming interface (API), making the transition to

the HPC system seamless.

There are two key enablers in the design of existing

open source analytic frameworks which support

efficient hosting on an HPC system. First, the fault

models that the software resilience layers target are

primarily in the data interfaces between the parallel

processing nodes. Some key interfaces include the

data transfer and barrier synchronization between

compute nodes, and data input/output to the nodes.

These areas are precisely where HPC systems excel.

The second enabler is that the implementation of

the open source frameworks follows a very modular

object-oriented approach. This approach encapsulates

the framework functions into very well defined classes.

This means that the software fault resilience layers are

encapsulated within the function classes where faults

are expected to occur, namely in the data movement

interfaces. Surgical replacements of these classes

with implementations that use the HPC parallel design

pattern remove the software overheads and achieve

the HPC performance levels. The remainder of the

framework, especially the users’ API, remains intact.

The following section describes the results of applying

this approach in porting the open source Apache

Hama graph analytic framework to an HPC

InfiniBand Cluster.

4. Proof of Concept: The Apache Hama Test Case

Graphs provide a natural representation of

unstructured but related data. However, many

characteristics of real-world graphs make them

difficult to process in parallel. In particular, Graphs

constructed from many real-world data sets follow a

power-law distribution in node-degree, resulting in low

diameter and non-partitionable graphs. Furthermore,

the algorithms that are of most interest for graph

analytics typically have low vertex computation to edge

communication ratios, further stressing the fault-

prone communication infrastructure of the commodity

computing systems. In contrast, HPC systems typically

provide high bandwidth communication and fast

synchronization mechanisms. These characteristics

make graph analytics an ideal test case for porting

representative frameworks to an HPC system.

There are several examples of proprietary and

open source graph analytic frameworks, such as

Googles’ Pregel, Apache Giraph, Graph Lab, and

Graph Processing System. For this exercise, the open

source Apache Hama [1] graph analytic framework

was chosen as a test case, and ported to an HPC

InfiniBand interconnected Cluster. Apache Hama is

built on Apache Hadoop (Core, HDFS, ZooKeeper),

and provides a representative baseline for many open

source frameworks.

Figure 1. Hama Bulk Synchronous Processing (BSP) Model

Feature Description

NUMBER OF NODES 128

NODE CONFIGURATION Dual Socket SMP

PROCESSOR x86_64 26xx class, 8-core, dual

threaded

MEMORY 64 GB/node

INFINIBAND Quad FDR

NODE OPERATING SYSTEM Linux

SYSTEM RESOURCE

MANAGER

SLURM

Table 1. Test HPC InfiniBand Cluster Configuration

5. Apache Hama Overview

Apache Hama provides a parallel processing framework

modeled after the Bulk Synchronous Processing (BSP)

model, as shown in Figure 1. The primary processing

is performed iteratively as a sequence of SuperSteps,

consisting of local computation (Compute), communication

(Communication), and a barrier synchronization (Barrier

Sync). Hama also supports a graph analytic specific

“vertex centric” API, with its Graph Package. In this case,

the local computation is specified for a single vertex, the

communication is specified from a vertex to neighboring

vertices connected by edges in the graph, the barrier is

between all vertices in the graph. Hama also provides for

initial graph input during a prefix Setup method, and a

similar algorithm results output during a postfix

Cleanup method.

Apache Hama makes use of the Apache ZooKeeper

project to perform basic bookkeeping on the parallel tasks,

as well as to implement the Barrier Sync function. For this

exercise, Apache Hama version 0.6.4, was combined with

Cloudera’s Hadoop distribution, CDH 4.5.0 [2] and stood

up on an InfiniBand Cluster, as described in Figure 1.

6. The HPC InfiniBand Cluster

A large percentage of capability class HPC systems use

InfiniBand technology to interconnect high performance

compute nodes. The target system for this exercise is

described in Table 1.

7. Initial Evaluation

The Apache Hama framework is written in Java, as

are the BSP and Graph Package user applications.

There is a very minimal framework API for sending

and receiving messages, and performing the barrier

synchronization of the SuperStep. The data input and

output follows the Hadoop model. Several classic

graph analytic kernels were implemented. These

kernels include Breadth First Search, Connected

Components, PageRank, Clustering Coefficients,

Graph Pattern Matching (based on Strict Simulation),

Single Source Shortest Path, All Source Shortest

Path, and Betweenness Centrality (vertex and edge

centrality). The implementations of these test kernels

spanned all three programming models of Hama

(BSP, Graph Package, and C++ Pipes). Two of the

test kernels, CBench and BMLPA are described

below. The expressive semantics of Java resulted in

very short development times and compact code for

individual graph kernels. In short, the Productivity of the

framework was very good.

For performance analysis of Apache Hama, several

suites of tests were generated for the various graph

analytic kernels, primarily varying data set sizes and

degree of parallelization. Across the board, it was

noted that the Barrier Sync and the Communication

component times dominated the total runtime of each

kernel. The balance between the two components

varied depending on the kernel, but in all cases the

total runtime was dominated by these basic framework

services. An analysis of the data showed that the

performance of these two components was very poor

(orders of magnitude) compared to analogous code

using the native MPI libraries on the InfiniBand Cluster.

This data is provided in Figure 4 and Figure 5.

8. A Better Hama

The decision was made to modify the Apache

Hama framework to improve the performance of

the Communication and Barrier Sync to leverage

the strengths of the HPC system. Analysis of the

Hama framework showed that the Barrier Sync and

Communication functions are implemented as very

modular Java class objects. Furthermore, the software

layers required for fault resilience in a distributed

environment were easily identified.

Figure 2 depicts the original Apache Hama block

diagram for the Barrier Sync and Communication

(messaging) functions. Hama uses ZooKeeper

to implement the Barrier Sync function. Several

ZooKeeper servers are started in the system, and

each Hama task must connect to one of the servers

to join the barrier. The ZooKeepers then communicate

to complete the barrier, and notify the Hama tasks.

For fault resilience, the ZooKeeper servers all must

keep a consistent state of all Hama tasks that have

entered the barrier. As Hama tasks join the barrier, the

ZooKeeper servers begin the process of replicating

their state among each other, adding to the overhead.

In the event that a ZooKeeper server is lost (due to

network failures, server failures, etc.) the remaining

ZooKeeper servers can continue serving the Hama

tasks. While this is the correct philosophy for a

commodity environment, it is not necessary in an

HPC environment.

Figure 3 depicts the modified Apache Hama block

diagram for the Barrier Sync and Communication

(Message) functions. A simple Barrier Sync function

was implemented as follows. Instead of launching a

small number of ZooKeeper servers, an MPI-based

server was developed, and launched one per compute

node in the InfiniBand Cluster. To join a Barrier Sync,

each Hama task contacts the local MPI server via a

Barrier pthread. The MPI servers wait until all local

Hama tasks have joined, then call a global MPI barrier

function. When the global MPI barrier returns, the

MPI servers respond back to the Hama tasks. The

modifications to the Hama framework were minor, and

consisted of modifications to the Sync class which

formerly interfaced with ZooKeeper to now interface

with the MPI server. The only other modification was

to the initialization code which would normally bring up

the ZooKeeper servers for the Barrier Sync function.

This code was changed to start up the MPI server.

Figure 2. Baseline Apache Hama Barrier Sync and Communication

Functions

Figure 3. Improved Apache Hama Barrier Sync and Communication

Functions

The replacement of the communication function was

similarly focused on just the part of the interface moving

the data between Hama tasks. As shown in Figure 2, the

baseline Hama uses a Remote Procedure Call (RPC)

for this data movement. Each Hama task would contact

all of the other Hama tasks directly for which it had

data to transfer. A Receiver thread was used to capture

incoming messages for later use by the destination Hama

task. This RPC approach includes several exchanges of

control, status, and other “chatter” to implement a reliable

communication protocol in a commodity environment.

Similar to the Barrier Sync implementation in MPI, the

communication functions were modified to connect to the

local MPI server as shown in Figure 3. A Hama task would

send all of its outgoing messages to the local MPI Server.

The local MPI Server would then aggregate messages

to other destination compute nodes, and then transfer

the appropriate data directly to the MPI server on each

destination node. On the destination side, the MPI Server

used a Receiver pthread to capture all incoming messages

for local Hama tasks. Finally, each Hama task would use

its own Message pthread to pull down its messages from

the MPI Server Receiver pthread. The use of pthreads for

the modified Barrier Sync and Communication functions

enabled the use of hardware shared memory support on

the HPC compute node, further improving the performance.

This MPI-based approach, while not an ideal solution,

was selected to support a quick evaluation of alternate

approaches to see if any further performance bottlenecks

are hidden behind these two functions. As the performance

benefits are quantified, the goal would be to develop similar

HPC-related solutions that are robust and maintainable,

and release those implementations to the open source

community. If properly designed, these implementations

may be substituted into the standard distribution via

configuration settings at runtime.

9. Performance Characterization using a Synthetic
Benchmark

To accurately test the MPI-based improvements, a

synthetic benchmark, the Communications Benchmark

or CBench was developed. The key CBench

parameters are given in Table 2.

In order to evaluate the performance of the modified

Barrier Sync function, a parameter sweep scaling test

using CBench was configured and executed against

both versions of the Hama framework running on the

InfiniBand Cluster. CBench was configured as (T=??,

P=T, N=1, M=1024, I=200). Each compute node

supported 16 Hama tasks. During each SuperStep of

the test, each CBench task generated a 1KB message

to every other task in the configuration. The results are

depicted in Figure 4. As the number of Hama tasks

(T) grows, the time Barrier Sync time also grows. In

the best case, this growth would be logarithmic in the

number of tasks. For the ZooKeeper Sync, the growth

is slightly more than linear. The MPI Sync scales much

better, achieving a performance Speedup of more

than 4 for small numbers of tasks, and stabilizing

from 2-3 for the range of task configurations tested.

Extrapolating to larger numbers of tasks, it is

expected that the MPI Sync would continue to

increase its performance gains over the Zookeeper

Sync implementation.

A similar approach was used to evaluate the

performance of the modified Communication function.

A CBench parameter sweep test was configured as

(T=512, P=T, N=1, M=??, I=200), and executed on

both versions of the Hama framework running on

the Infiniband Clusters. During each SuperStep of

the test, each CBench task generated a message of

the current size and sent it to every other task in the

configuration. The results are depicted in Figure 5. For

small messages, less than about 8KB, both versions

of Hama performed well, with the MPI Communication

version achieving a speedup of about 5. However,

when the message size grows to 8KB and beyond,

the baseline Hama RPC Communication performance

drops considerably while the performance of the MPI

Communication version scales with the message size.

The 8KB message size is related to the underlying

Message Transfer Unit (MTU) of the Infiniband. The

MPI Communication version achieves speedups of

10-25 for larger messages. The non-uniform

performance spikes in the baseline Hama are also

related to the MTU size. Changing the MTU size

changes where the spikes occur, but the overall

performance profile is similar.

10. Performance Achievements with Community
Detection in a Twitter

In order to fully test the performance benefits of the

improved Hama, a real-world application was built in the

framework and tested against real data. The application

chosen for this effort was a Community Detection

kernel based on label propagation named Balanced

Multi-Label Propagation Algorithm (BMLPA) [3] taken

from the open literature. The algorithm reads in a graph

with vertices (V) and edges (E). The vertices are spread

across Hama tasks (T). Initially, each vertex begins

with a set of labels provided in the input graph. In each

iteration, a vertex sends its current list of labels to all

neighbors connected by edges. In turn, each vertex

receives label lists from its neighbors on its incoming

edges. The lists are sorted and ranked by frequency of

occurrence. The vertex keeps the labels which occur

above some cutoff frequency termed the “Belonging

Probability (b).” The algorithm terminates when the rate

of label updates drops below an intrinsic constant.

As a test data set, a graph was generated from Twitter

data. The each vertice of the graph was a unique

Twitter user. An edge from user i to user j was added if

user i generated a tweet that “mentioned” user j, either

through a directed @ tweet, retweet, etc. If the edge-

generating tweet included a hashtag, that hashtag

was added to initial label list for user i. For this test,

a graph with ~8 million vertices was extracted from

Twitter data (April 2014). The resultant graph had

~10 million edges. Anecdotally, there were many small user

communities, often in hub or chain configurations. There

were a few vertices that were mentioned a large number of

times, thus creating large communities.

The BMLPA test cases were parameterized as

(T=256|384|512, b=0.05|0.10|0.20|0.40) and executed

on 64 compute nodes, each node executing 8 Hama tasks.

Figure 6 depicts the performance improvements in the

BMLPA Community Detection application combined with

the Twitter data. For a Hama configuration of 256 tasks,

the speedup was about a factor of 6, with 384 tasks the

speedup was about a factor of 10, and at 512 tasks the

speedup varied with the Belonging Probability b. Across

all tested configurations, the MPI Hama out performed the

original Hama.

The variation in performance from run to run is directly

linked to the average amount of data transferred from

one Hama task to another during the execution. Figure 7

provides the average message bundle transferred task-

to-task during each test case. Correlating the data in

Figure 7 to the data in Figure 5 explains the application

speedups reported in Figure 6. For example, when T=512

and b=0.40, the average message bundle size is about

4KB. This message size shows that the peak speedup in

the transfer component only of the application is capped

at 5. Ahmdahls law dictates that the total speedup will be

less than this peak due to other execution components

being the same between the original and the modified

Hama versions. As a second example, keeping T=512 but

for b=0.05, the average message size is about 8KB, which

shows a peak speedup in the transfer component of over

23. Hence the total speedup is greater. This also indicates

that the message transfer time is a dominant component of

this application. Achieving a significant speedup when the

message size is small (T=512, b=0.10) also indicates that

the Barrier Sync time is a significant contributor as well.

In comparing the performance of the algorithm runs using

the ZooKeeper Sync and RPC Communication versus the

MPI Sync and Communication versions of Hama, the MPI

version clearly is a win, reducing the total BSP run time on

Parameter Description

NUM_TASKS, T Number of BSP Tasks executing

NUM_PEERS, P Number of Peers with which a Task will

randomly select to communicate

NUM_MSGS, N Number of messages to send between

communicating Peers

MSG_SIZE, M Message Size in bytes

NUM_ITERS, I Number of BSP SuperSteps to execute

Table 2. CBench Parameter Descriptions

Figure 4. MPI Barrier Sync Performance Speedup and Scalability

Figure 5. MPI Communication Performance Speedup and Scalability

a real application by a factor of 10. This performance

gain underscores the importance of efficient Barrier

Sync and Communication implementations in the Hama

(or any) framework.

11. Work in Progress

In order to fully evaluate the MPI server approach,

the BMLPA Community Detection application will be

chained with two other applications. First, the larger

communities identified by the BMLPA algorithm will

be individually processed by a Betweenness Centrality

algorithm to identify “leaders” for each community.

Next, the Twitter graph annotated with community

and community leader data will be processed by a

Force Directed Layout [4] algorithm to produce 2-D

and 3-D displays of the annotated community graph.

All algorithms are implemented in Hama with BSP or

Graph Package programming models. Full performance

analysis of the algorithms will be used to further

evaluate the success of the MPI-server approach.

12. Next Steps: Integrating HPDA into the Enterprise

Achieving real-time performance with open source

data analytic frameworks is the first step towards the

end goal of enhancing the enterprise mission. The

real value comes with the integration of the analytic

computations with “the mission” to enhance the value

of the mission. There are three key thrust areas that

must be addressed.

The first area is to continue the work in the open

source community for achieving interoperability of

multiple analytic frameworks in the enterprise. Within

a given mission pipeline, each step may require a

different type of analysis, hence a different framework

to be employed. Data and results are passed from one

step to the next, from one enterprise resource to the

next. As new frameworks are ported to HPC systems,

the modifications should be fed back to the open

source community.

Next, the data analytics must share data with legacy

systems in the enterprise. There are several aspects to

this problem, including the ability to quickly stream data

between legacy file systems and the standard HDFS

big data file systems, as well as to directly access the

legacy file systems. HPC file systems provide sufficient

parallelism and performance to support this approach.

Smart data movement technologies also play a role.

Finally, the data analytics frameworks and applications

must be able to interact directly with existing HPC

resource management and workflow tools. HPC

resources are expensive, and must be shared with other

operations. The goal is to dynamically deploy a data

analytic framework to an HPC system as needed, run

the analytic applications, then tear down the framework

and release the HPC resource back to the enterprise.

This capability supports the dynamic allocation of HPC

resources, improving the value to the enterprise. The

final vision is to provide the ability to use the enterprise

workflow environment to dynamically stand up a

mission pipeline, including contributions from open

source data analytic framework running in real-time.

Figure 6. Achieved Speedup with the Community Detection applied

to Twitter Data

Figure 7. Average Task-to-Task Message Sizes in the Community

Detection Application

www.gdmissionsystems.com/hpc

13. General Dynamics Mission Systems Background

General Dynamics Mission Systems develops
resilient mission systems and products for high value
information and cyber platforms. With unsurpassed
mission knowledge, an open approach and unrivaled
portfolio, we advance cybersecurity for our nation’s
defense, intelligence and infrastructure. As technology
evolves, everything is more connected and information
is increasingly valuable and vulnerable. To outpace and
outsmart pervasive and sophisticated threats, General
Dynamics is leading a revolution in the approach to
cybersecurity.

For more than 35 years, we have been solving our customer’s

most challenging problems through the design, development, and

deployment of HPC systems.

12450 Fair Lakes Circle

Fairfax, VA 22033

www.gdmissionsystems.com

[1] “The Apache Hama Project,” 2014. [Online]. Available: http://hama.

apache.org.

[2] “CDH,” 2014. [Online]. Available: http://www.cloudera.com.

[3] Y.-F. L. S. G. H.-Y. W. S.-F. T. Zhi-Hao Wu, “Balanced Multi-Label

Propagation for Overlapping Community Detection in Social

Networks,” Journal of Computer Science and Technology, vol. 27, no.

3, pp. 468-479, 2012.

[4] E. M. R. Thomas M. J. Fruchterman, “Graph Drawing by Force-Directed

Placement,” Software-Practice & Experience, vol. 21, no. 11, pp.

1129-1164, 1991.

[5] S. F. Andrea Lancichinetti, “Benchmarks for Testing Community

Detection Algorithms on Directed and Weighted Graphs with

Overlapping Communities,” Physics Review, 2009.

[6] “Twitter,” [Online]. Available: https://twitter.com.

Cleared for external release #1905, October 2014

